
AAL-2009-2-049, ALIAS
D6.4

Update navigation software module

Due Date of Deliverable 2012-06-30
Actual Submission Date 2012-06-30

Workpackage: 6.4
Dissemination Level: Public

Nature: Report
Approval Status: Final

Version: v0.2
Total Number of Pages: 43

Filename: D6.4-IUT-NAV-v0.1.pdf
Keyword list: navigation module, person observation, spatio tem-

poral planning

Abstract
This report describes the updates of the navigation system, developed within the
ALIAS project within the year 2011. Also, a brief overview of all navigation
modules is given.
The information in this document is subject to change without notice. Company or product names men-
tioned in this document may be trademarks or registered trademarks of their respective companies.

ALIAS D6.4

History

Version Date Reason RevisedBy
0.1 2012-05-21 created [IUT] Jens Kessler
0.1 2012-06-18 first review [TUM] Tobias Rehrl
0.2 2012-06-20 included remarks of first review Jens Kessler
0.2 2012-06-26 second review [MLAB] Christian Martin
1.0 2012-07-03 included remarks of second review Jens Kessler

Authors

Partner Name Phone / Fax / Email
IUT Jens Kessler Tel: ++49 3677 69-4170

Fax:
Email: jens.kessler@tu-ilmenau.de

2

ALIAS D6.4

Table of Contents

1 Introduction.. 5
2 System Overview .. 6
3 Finding a good position to observe a person in an unobtrusive way 8

3.1 Introduction ... 8
3.2 Integration into the navigation software system 9
3.3 Formulation of the optimization problem ... 9

3.3.1 Boundary conditions .. 10
3.3.2 The optimization function ... 11
3.3.3 Particle swarm optimization .. 12

3.4 The 3D case ... 14
3.4.1 Data structures .. 14
3.4.2 Realization of the single criteria ... 15
3.4.3 Problems ... 17

3.5 The 2D case ... 17
3.5.1 Data structures .. 17
3.5.2 Realization of the single criteria ... 17

3.6 Experiments... 18
3.6.1 Finding positions in 3D .. 18
3.6.2 Finding positions in 2D .. 20

3.7 Conclusion .. 21
4 Actively avoiding the motion path of a moving person 23

4.1 Introduction ... 23
4.2 Integration into the navigation software system 25
4.3 Prediction of the person’s trajectory .. 25

4.3.1 The Potential Field .. 26
4.3.2 Motion Prediction.. 27

4.4 The Adapted Fast Marching Planner ... 28
4.4.1 The Fast Marching Method ... 28
4.4.2 Adaptation for Predicted Motions ... 30
4.4.3 Following the Calculated Path.. 30

4.5 Experiments and Results... 32
4.6 Conclusion and future work .. 34

5 Robot Remote Control.. 35
5.1 Introduction ... 35

3

ALIAS D6.4

5.2 Remote Architecture.. 35
5.2.1 Remote Back end .. 36
5.2.2 Remote Control Objective ... 37

6 Conclusions.. 39
6.1 Outlook... 40

4

ALIAS D6.4

1 Introduction

The primary objective of the ALIAS project is to develop a mobile robot platform that is
designed to assist elderly users and people in need of care to continue independent living
with minimal support from carers. The main functionalities of the robot platform will
include the ability to interact with users, monitor their well being and provide cognitive
assistance to them while using social networks and other communication platforms in
daily life. In these situations, the functionalities are supported by the ability of the robot
to move autonomously and also focus during the navigation on persons within its field of
operation.

While the preceding deliverables mainly describe methods, how to actively approach a
person to support the dialog, this deliverable describes more the passive behavior of the
robot, when the robot and the person do not interact with each other. Here, the back-
ground behavior of the robot is changed, so that no other modules of other partners have
to deal with the improvements described in this deliverable. In detail, a passive obser-
vation behavior will be described, and also an approach, how to drive around a person,
when no interaction is wanted, is presented. Additionally, the system to remotely control
the robot is described, and an overview of all navigation system components is given.

This deliverable is structured as follows: in chapter 2 a short overview of the current navi-
gation system is given, how all modules interact together, and where the newly presented
modules are put in place. In chapter 3 our approach on finding a good observation posi-
tion is shown, while chapter 4 describes the behavior of actively avoiding a person. The
chapter 5 describes briefly the mechanism of remote controlling the robot and in chapter
6, the whole navigation system is summarized and an outlook of our future work is given.

5

ALIAS D6.4

2 System Overview

This chapter presents a brief overview of the navigator structure as shown in figure 2.1.
The navigation core is defined by the motion controller, which implements the so called
"Dynamic Window Approach" [11], which was extended by MetraLabs to allow a more
modularized architecture (see ??). Here, a set of possible next motion commands is eval-
uated by voting for each command by a set of so called objectives. These objectives could
be switched on or off, depending on the currently given task. So, different driving behav-
iors could be realized by the same controlling mechanism by just using a different set of
objectives. The navigation behaviors could easily switch during runtime operation.

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Figure 2.1: the modular structure of the navigator as described in ??. The dynamic win-
dow controller is the core decision unit and is surrounded by a set of objectives, which
could be switched on or off. The active objectives vote for the next driving command.
The set of active objectives determine the behavior of the robot and has to correspond to
the given task.

The configuration of the navigation system is changed by the application designer, or in
our case, by the dialog manager. Also, the task is given by the application and it has to be
assured, that the navigator configuration and the given task correspond to each other.

6

ALIAS D6.4

During classical navigation, only the objectives for following a path and avoiding ob-
stacles are active. The remaining objectives have to be deactivated. The objective for
following a path uses a path planning algorithm in the background to be able to vote for
feasible driving commands. The collision avoidance objective only reacts on the local
perceived obstacle situation and does not consider which driving command leads towards
a goal. Only the combination of both objectives enables the robot to drive towards the
goal.

In this deliverable, we present also new functionalities like remote control, drive to a good
observation position or actively avoid a person. For each functionality, a whole chapter is
used to describe the insides. Here, it should only be mentioned, that the remote control
behavior as well as the avoiding behavior are realized to be an extra objective, while the
observation behavior is a simple "drive to a position" task, where the position is not set
manually, but is the result of an optimization process. All new parts, which are described
in detail within this deliverable are shown in figure 2.2.

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Basic Navigation System

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Basic Navigation System

D 6.3

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Basic Navigation System

D 6.3

New New

Figure 2.2: the basic modules of the navigation system are shown in red and are provided
by MetraLabs. The green part was described in detail in deliverable D6.3 [19] and the
blue parts are described within this deliverable.

7

ALIAS D6.4

3 Finding a good position to observe a person in an unobtrusive way

Usually, in mobile robotics the robot has to deal with tasks like interacting with a person
or performing a driving task, localizing itself, or building a map of the environment. But
what happens, if the robot just has to wait and thereby still has to react on user commands?
During all-day-operation of the ALIAS robot, the robot has to find a good position where
the user can still be observed, and the robot does not disturb the user’s activities. In this
chapter, we present an approach, how to find such a position by solving an optimization
problem using a particle swarm optimizer, and we show results for that problem in the
2D and 3D case. This method can be used to "park" the robot at a feasible position and is
interfaced by the dialog manager.

3.1 Introduction

In recent years, mobile robotics more and more attain the homes and places of nonexpert
users to actually fulfill task like reminders, video call services, emergency aids[13], re-
mote controllable robots[20], guide customers in supermarkets and home improvement
stores[12][18], and being robotic butlers to serve drinks or food[24].
In the domain of navigation, there are lot of navigation problems to be solved when deal-
ing only with interaction, map building, path planning, or localization. If one thinks about
end user applications in home scenarios, where a robot takes over the role of a service as-
sistant or a butler, there is also a lot of time when the robot is idle and has no actual task to
do. Here, the robot only has to recognize commands (e.g. gestures) from the user, while
still be able to perceive the user. Due to these reasons, it is also a task for a robot within a
long term home scenario to observe a person in a non-intrusive way.
There are several criteria a good observation position should fulfill: (i) the user should of
course be visible from that position, (ii) the observation position should be unobtrusive
towards the user, (iii) the distance should be sufficient to be able to detect the user with the
robot’s on board sensors, and (iv) from the chosen observation position the robot should
be able to see many possible resting positions, where the user could stay. This knowledge
should enable the robot to chose an observation position, where it can place itself most of
the time.
Similar problems are rarely described in the literature. There exist approaches of intel-
ligent photograph robots which attempt to take good pictures in party situations [4] or
realize a robotic camera man to distinguish good shooting positions for video confer-
ences [31]. In these approaches, the quality of the taken pictures is the central criterion to
optimize the observation position. A larger group of publications refers to the so called
next-best-view problem. Here, a sequence of observation points should be extracted to
gain maximal structural information for example from 3D objects [7] or the structure of
the environment (2D and 3D map building) [22], [34]. Within these approaches, the in-

8

ALIAS D6.4

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Figure 3.1: the observation software module within the navigation architecture. Note, that
this module is separated from the navigation core, since it only emits a sequence of "drive
to position" tasks. The module is controlled by tasks, emitted from the dialog manager.

formation of an object structure should be gathered in an incremental fashion by using a
minimal number of observations. It differs from our approach, because these approaches
try to increase the structural information about the observed objects in an optimal fash-
ion. We do not want to maximize information gain, and it is also not suitable for our
problem to observe the person from a position with maximal information retrieval since
such a position would eventually not fulfill all our criteria and only guarantees, that the
robot’s sensors will perceive the person correctly. Other approaches simply try to keep
the person in a certain position (and distance) within the camera image or laser scan by
using controller schemes [27], [23]. This is called visual servoing and is also not suitable
for our problem, since the robot should stay at its position, even when the person moves
slightly.

3.2 Integration into the navigation software system

As stated in the introduction, the module for finding a good observation position is sepa-
rated from the navigation core. It could be triggered by the dialog manager and produces
as a result a simple navigation task, that the robot should drive to the current optimal
point. New targets are released continuously until the module is deactivated by another
dialog manager command. This structure is shown in figure 3.1.

3.3 Formulation of the optimization problem

As stated above, the observation position has to consider a variety of criteria. To find an
optimal position to observe a person, the set of criteria has to be evaluated in possible
samples of the search space. The search space contains the position ~x = (x, y, z) of
the robot and the view direction φ. We assume the robot can only move at the ground

9

ALIAS D6.4

plane, so the z component is fixed by the robots height. Also, the pitch and roll angle
of the camera are fixed, and only the yaw angle φ has to be considered. From this three
dimensional search space the optimal point is chosen as the best observation position.
Since the problem is formulated as an optimization process, we have to consider at the
one hand the bounding conditions, and on the other hand the optimization function. Both
aspects are described in the next two sections. Additionally, the optimization algorithm is
briefly described afterwards.

3.3.1 Boundary conditions

The solution of the optimization process depends on the boundary conditions that exist
when the process is started, and which may also change during the process. In fact, these
conditions reflect the knowledge we have about the respective environment. On the one
hand, this is the map m(~x) of the environment, which gives information about known
obstacles, and on the other hand it is the position ot of the person to be observed at a
given time t. Additionally, we also include knowledge where the person usually sits,
stands or lies. This is done by providing a density function p(o = ~xi) to give a probability
that a person can be observed at a certain point ~x in the home environment. Figure 3.2
shows all boundary conditions summarized. The person occupancy density function is
approximated by building an 3D histogram with bin size w over an infinite time interval
to collect user observations, and is no function reflecting time specific intervals:

p(o = ~xi) =

∫∞
t=−∞ ot(~x = ~xi)∫

t

∫
~x
ot(~x = ~xi) · w3

(3.1)

In each cell ~x the number of person observations is counted and normalized over all
observations perceived in all positions over the whole observation time interval. Since it
is not possible to observe the true function, this function has to be build incrementally,
and the estimation of this function could be improved over time. In this work, we chose
an efficient grid based space representation, namely an occupancy map representation and
a voxel space representation. We collect point cloud data from a 3D Kinect camera, using
the OpenNI framework to separate user points from non-user points, and cluster them into
voxels to build a person occupancy histogram to represent p(o).
But, is this optimization problem a dynamic or static problem? Looking at the different
boundary conditions, the map m is considered to be static. Observed over a huge time
interval, even the person occupancy density function p(o) is a static function. But since
this function has to be estimated over time, its first representation may be wrong, and the
problem begins to show dynamic properties. The person pose ot is the most fluctuating
and dynamic boundary condition, which forced us to handle the problem as a dynamic
optimization problem. That is why we have chosen an optimizer suitable for dynamic
optimization problems, namely the particle swarm optimization (PSO) technique [9].

10

ALIAS D6.4

Figure 3.2: the boundary constraints of the optimization problem: the obstacles within
the environment, the current person position ot, the person occupancy distribution p(o|~x)
and the position of the camera on the robot.

3.3.2 The optimization function

The optimization function f reflects the different criteria to be considered and fuses these
criteria into a single function. It is a function over the optimization space S = {~x, φ},
where ~x ∈ <2, φ ∈ <. There are two hard criteria to reflect physical properties to con-
strain the search space and mask out impossible search positions. These are the driveabil-
ity d(~x), and visibility of the person v(~x, φ). Both functions d and v are binary functions.
Moreover, a set of soft criteria ci has to ensure: (i) an appropriate distance to the user
(cdist), (ii) the ability of the sensor to detect a person (cdet), (iii) to perceive the person from
the front (cfront), and (iv) how much of the person’s occupancy distribution is observed
(cpodf). An example of all functions is shown in figure 3.3. Since these criteria are no
hard criteria, an optimal compromise between them has to be found. These criteria are
fused by the superposition principle. So the resulting optimization function is defined as
follows:

f(~x, φ) = d(~x) · v(~x) · [α1 · cdet(~x, φ) + α2 · cdist(~x)

+α3 · cfront(~x) + α4 · cpodf (~x, φ)] (3.2)

11

ALIAS D6.4

}
}

e) Driveability

d) Visibility

c) Sensor
distance

b) Social
distance

soft
criteria

hard
criteria

a) Person
occupancy

(d * e)

(a + b + c)

*

Figure 3.3: hard and soft criteria. The hard criteria mask out the possible search space,
and particles (shown as orange dots) are only placed in the remaining region. The soft
criteria determine the optimum and are summed up to form the optimization function.
Note, that the soft criterion of view direction is not shown here.

Most criteria are simple, and at this point we will take a closer look only to cpodf , the
criterion of the person’s occupancy distribution. Since positions are already masked out,
where the person could physically not be seen (using v(~x) ·d(~x)), it is possible to observe
the person from the subset of all remaining positions Xv = ~x1...~xn. Now the question
is: how much of the places where the person usually is, are observed by each possible
observation pose ~xi? Here, it should be noticed, that the person is observed using the
Kinect 3D camera, mounted in a fixed position on the robot and having a certain opening
angle. So, a view cone Xf is cast by the camera into the home environment, depending
only from the rotation angle of the robot and the position inside Xv. The idea of cpodf is
now to integrate all observable points ~x from p(o) , where ~x ∈ Xf and where p(o) > 0 :

cpodf =

∫
~x

p(o = ~x) , where ~x ∈ Xf (3.3)

The key idea is shown in figure 3.4. This function should guarantee that the robot places
itself at a position where most of the places the person usually rests at, are observed. Also,
the robot should not change position, if the person only moves slightly.

3.3.3 Particle swarm optimization

The optimization problem is simply to find the best values of (~x, φ) that maximizes the
output of f(~x, φ). Our solution to the defined optimization problem uses the particle
swarm optimization (PSO) approach. It is a well known technique (see [9], [8]) to find

12

ALIAS D6.4

a global optimum by sampling from a defined optimization function, and uses a mixture
of directed and random search within the search space to iterate towards the optimum.
Unlike a particle filter, the particle swarm does not represent a probability distribution.
Constriction factor particle swarm optimization (see [8]) is used to solve the problem
iteratively. The found solution is further refined by applying a kernel density estimator
[29]. Here we will briefly describe what each particle contains, how one iteration of the
particle swarm optimization is defined, and how the kernel density estimation is used to
get the optimal position from the current iteration step.
Each particle contains a state, which is part of the current optimization space, and a speed
vector also placed within that space. So, in our case one particle contains a position
(x, y) ∈ Xv and a view direction φ. Note, that we only optimize over (x, y) and chose
φ to view directly towards the current person position ot. Thats why we only need speed
components of the particles in x and y direction, namely vx and vy. Each particle is de-
fined by p[i] = {~x[i] = (x, y), φ[i], ~v[i] = (vx, vy)}. In the first step, particles are randomly
initialized inside Xv, and the optimization function f(~x, φ) is calculated for each particle.
Here, two special particles have to be remembered: one is the currently best (with the
highest value of fp[i]), called p[loc best], and one is the particle with the best value of fp[i]
ever measured in all iterations, called p[glob best]. The key idea behind the particle swarm
optimization is, that particles tend to search near both positions for better values of the op-
timization function. The speed component hereby enables the particles to overcome local
minima and circle around both positions. The update of the position and speed component
is simple, but needs the constriction factor K to guarantee convergence:

Xv

Xf

AA

BB

particle

person
p(o|x)

Figure 3.4: in red: the set Xv of all positions where the person is visible. From all other
positions the person is covered by an obstacle. Particles only exist in Xv. In blue: the
view cone Xf which a particle can observe. Note that Xf defines the area where p(o|~x)
is integrated: in this case A+B.

13

ALIAS D6.4

~x
[i]
t+1 = ~x

[i]
t + ∆t · ~v[i]

t

~v
[i]
t+1 = K

[
~v

[i]
t + c1 · r1 · (p[loc best] − x[i]

t+1)

+c2 · r2 · (p[glob best] − x[i]
t+1)
]

(3.4)

K =
2∣∣2− θ −√θ2 − 4θ

∣∣ , where θ = c1 + c2, θ > 4

The variables r1 and r2 are random numbers from an interval [0..1]. The parameters c1
and c2 are chosen to prefer either the local best particle or the global best parameter. Since
our optimization is defined as a dynamic problem, we select c1 to have the higher value,
because it is not guaranteed that the best position observed contains still the highest value.
So, a local optimum is preferred by the particle swarm.
Finally, we use a kernel density estimation to refine our solution of the best position since
the particles almost never hit the exact optimum. Here, each particle defines the center
of a Gaussian kernel. All particles are summed up to represent a probability distribution
p(x, y):

p(x, y) =
1

N

N∑
n=1

1

2πh2
· e−

(x−xn)2+(y−yn)2

2h2 (3.5)

Here, h represents the kernel size and is estimated by using the highest variance from
the x- or y-dimension: h = max(σx, σy). Note, that the maximum value could not be
extracted from the kernel density in a closed form. Thats why we calculate the density
in every point within Xv and simply select the maximum point as the current best obser-
vation position. By using the kernel density estimation, we could improve the value of
f(~x, φ) by 3-4% and we could also supress stochastic outtakes from the random optimiza-
tion process.

3.4 The 3D case

In this section, we will describe in detail all functions which are part of the optimization,
and we also show the representation of the environment.

3.4.1 Data structures

All information is given to the optimizer by using a grid based voxel representation. The
obstacle map as well as the person occupancy probability distribution are defined within
a voxel grid of the same cell size. The typical size is 10 cm. An example configuration is
shown in figure 3.5. Also the view cone consists of a set of voxels, and the robot position
is the voxel containing the camera at the defined height over the robot base.

14

ALIAS D6.4

The voxel map is created from an 3D model of the environment in an external process.
We do not investigate this problem here, since it refers to the domain of 3D SLAM ap-
proaches. The person occupancy probability distribution is a simple histogram, where
each voxel volume counts the number of points belonging to a person, which are normal-
ized by all observed person points. These person points are collected from observations
with the Kinect 3D camera, the OpenNI framework [1] is used to separate background
points from person points. So p(o = ~x) for a volume element v is defined as:

pv(o = ~x) =

∑
j∈v oj

w3 ·
∑

i∈m oi
(3.6)

The numerator counts the 3D points oj within the volume v, while the denominator counts
all observed points oi ever perceived from the person in the whole map m.

3.4.2 Realization of the single criteria

Driveability

The first criterion we discuss is d(~x). Here, voxels are selected which could be reached
by the robots camera. This function is either zero, when the voxel is not reachable, or
one when this voxel is reachable. A horizontal cut through the voxel space is created
by considering only voxel cells at the same height as the robot base. The resulting layer
is dilated by the robot radius, to consider only cells which are reachable by the robot
base. Then, a Dijkstra planning algorithm [6] is computed within the layer by starting to
propagate a planning function from the current center position of the robot base until no
cells of the layer could be added to this function. These voxels are all reachable from the
current robot position. They are shifted by the camera height to define the first set of Xv

which in fact is the function d(~x).

Visibility

Our next function is the visibility criterion v(~x). Although this function is independent
from d(~x), it makes sense to only consider points which are inside Xv, since d(~x) and
v(~x) are multiplied. So the task is to check every voxel of Xv, if the person could be seen
from that voxel. This is done by ray-casting from the current voxel towards the projected
person position at the plane defined by the camera height. Note, that also all obstacles
have to be projected towards that plane. Here, the set of voxels inside Xv is reduced. An
example of both functions is shown in figure 3.5 a). With both functions known for a
given map and a given person position, the particle swarm could be initialized with regard
to Xv.

15

ALIAS D6.4

Sensor distance

The next function is the sensor distance cdet(~x). Since we use the Kinect sensor, the
recognition distance is limited to 3 meters. So, we use the sensor distance ds = |~xi − ot|,
which is the distance from the observed voxel ~xi towards the center of the person position,
using the parameter smax, which refers to the maximal distance the sensor could observe:

cdet(~x) =

{
1 , if ds < smax − 1

1
1+exp(ds−smax−0.5)

, else
(3.7)

Social distance

The social component is defined in a very similar way. As Hall [15] explains, the social
distance, where persons do not consider to interact with each other, is around 2.5 meters
and above. This is our social distance to make an observed person feel comfortable. The
function to consider this fact is defined as follows, using the parameter σd = 0.5m:

cdist(~x) = e
− (ds−2.5)2

2σ2
d (3.8)

Frontal view

For gesture recognition, face identification and emotion recognition, it is almost every
time necessary to observe the user from the front. Thats why we define an angle interval
where a good viewing angle from the front could be guaranteed. Since it is a hard de-
tection task to find the gaze direction of the person, we rely on the upper body pose to
roughly estimate the view direction of the person. Again, this is provided by the OpenNI
framework. The deviation from the person’s view direction towards the robot’s pose is
defined as angle β. With that angle, cfront could be defined as follows:

cfront(~x) =

{
0 , if |β| > π/2

1
1+exp(|β|−π/6)

, else
(3.9)

Person occupancy distribution

As described in section 3.3, the function cpodf describes, which part of the person occu-
pancy density function can be seen from the given voxel into the given direction. This
is a time consuming operation, since the visibility of the voxels of the person occupancy
density function has to be calculated. The key idea is, to cast rays in a regular grid from
the hypothetical camera center into the viewing frustrum and follow these rays until an
obstacle is hit. Here, the maximal distance from the camera, and the voxel size determine
the density of the rays, since the sampling theorem has to be considered. We have to
guarantee that at least two rays cross the most distant voxel. All voxels, crossed by a ray,
are collected to a set of visible voxels of the viewing frustrum Xfv. An example of the

16

ALIAS D6.4

frustrum is shown in fig. 3.5 c). Now, all density values which are covered by Xfv are
summed up from p(o|~x). Figure 3.5 b) shows an example of the function p(o|~xi).

cpodf =
∑
i

p(o|~xi) , where ~xi ∈ Xfv (3.10)

3.4.3 Problems

Although it seems to be the most natural way to calculate the optimization solution within
a 3D voxel model, there are some practical problems within the modeling approach. First,
we have to build a complete 3D model of the environment before it could be converted
into a voxel representation. Incomplete maps tend to find points behind walls as best
observation positions, since these walls are incomplete, and a huge effort has to be brought
to the robot to construct a feasible map. Second, and most important, the calculation of
the visible voxels inside the viewing frustrum Xfv of the camera to calculate cpodf is very
time consuming, which leads to unfeasible calculation times for a real world system (see
section 4.5 for details). Regarding these facts, we realized also an approach working only
in a 2D world, which drastically reduces the work load per iteration cycle.

3.5 The 2D case

The 2D approach is very similar to the 3D approach. Therefore, we only describe the
differences towards the 2D case here.

3.5.1 Data structures

Instead of using voxel representations, we use an occupancy map representation to model
our environment. So, all person poses and camera positions are 2D points within that
map. The given person occupancy density function is also a 2D function, which is created
by integrating p(o|~x = (x, y, z)) over z, leading to ṕ(o|~x = (x, y)).

3.5.2 Realization of the single criteria

Driveability

This criterion is also constructed using a Dijkstra planner starting from the given robot
position and executed until no further cells could be added to the planning function.

Visibility

Here, from all chosen pixels (which are reachable by the robot) the visibility of the person
is checked. If an obstacle is between person and pixel, the corresponding pixel is removed
from the search space.

17

ALIAS D6.4

Sensor distance

This function is identical to the 3D case. The Euclidean distance is now calculated in a
2D coordinate system.

Social distance

This function is identical to the 3D case. The Euclidean distance is also calculated in a
2D coordinate system.

Frontal view

This function is identical to the 3D case.

Person occupancy distribution

As mentioned before, the 3D voxel representation of p(o|~x) is projected to one layer
resulting in ṕ(o|~x). Again, parts of the distribution can be occluded by obstacles, but this
time we have to calculate the visibility Xfv only for a 2D layer and not for a volume,
which significantly speeds up the calculation time. The only problem is, that obstacles in
the map may be obstacles in a sense of navigation, but could be overlooked by the robot in
the real world. Examples are tables or u-shaped couches, where the robot is not allowed
to drive, but the line of view towards the person is free. These cases can be modeled
correctly in the voxel grid representation, but appear problematic when dealing only with
2D maps, since the height of obstacles is initially unknown. So, our search space Xv is
smaller than necessary. At the moment, this is a recognized problem that will be solved
in the future work.

3.6 Experiments

In this section, we show experiments done for the 3D and for the 2D case. The ex-
periments for the 3D environment where done by using two different artificially created
(simulated) 3D models (one is shown in figure 3.2), while the 2D experiments where ex-
ecuted by using the 2D occupancy map of our lab. Our experiments where focused on the
stability and the speed of our approach.

3.6.1 Finding positions in 3D

Since we simulate the 3D environment, we also define a person position artificially within
this environment. The resolution of our map was 10 cm per voxel. The person occupancy
distribution is recorded within a real setup of a living room, which equals the simulated
sitting area, and uses a Kinect device and the OpenNI library to track the person around
the sitting area. Since our PSO never terminates the optimization process, we measure

18

ALIAS D6.4

a) b) c)

Figure 3.5: an example of a rasterized 3D home environment with a) the two criteria of
driveability and visibility (d(~x) · v(~x)) , b) the person occupancy density, and c) a view
cone of one particle.

the found best position after 100 iterations, the calculation time for all iterations, and the
average time per iteration. The results are shown in table 3.1.

Resulting position Calculation time
mean variance tavg

x 4.14 m 7.6 cm update 54.09 s - 15.34 s
y 2.94 m 4.8 cm KDE 0.6 s
φ 20◦ 0.0◦ total 90 min - 25.5 min

Table 3.1: On the left: resulting optimal position of one map. We perform 10 runs to get
the mean position value and variance. We executed 100 iterations per run. On the right:
average time consumption for one iteration, the kernel density estimation (KDE), and the
total processing time for all 100 iterations. Note, that the highest time value represents
one processor core while the lowest value represents six cores. We used 100 particles for
the optimization process. Due to these unusable calculation times, we tried to simplify
the approach to a more efficient 2D version.

The accuracy of the found position is 7.6 cm at average which is more than sufficient for
the task. The calculations are executed using a 6 core 3.5 GHz AMD Phenom II processor
at 3.2 GHz. We used up to all 6 cores, since the calculation of f(~x, φ) at multiple particle
positions could be parallelized easily. It can be seen, that the processing power needed
for the optimization process exceeds the limits of the best hardware of todays mainstream
computers. Not to speak that such a hardware is usually not used within mobile robots.
The user has to wait at least half an hour until the robot reaches a good position. Most of
the processing power is used by the soft criterion cpodf to calculate the view cone Xfv.

19

ALIAS D6.4

a) b) c) d)

Person

Figure 3.6: Top view of the 3D model with an example timeline of the particle swarm.
The person position is shown by the blue crossed circle. Obstacle edges are shown as red
grid structures. Solid dots show particles. The colors of the particles code the result of
the optimization function f(~x, φ). Image a) shows the initial configuration of the swarm,
while b) shows the swarm after 7 iterations and c) after 100 iterations. It can be seen, that
the particles converge towards one position and increase their values of f(~x, φ). The last
image d) shows the calculated kernel density estimation of the particle set from c) with
the extracted optimal observation position.

3.6.2 Finding positions in 2D

Modeling the optimization problem in 3D seems to be the most detailed and natural so-
lution, but incorporates practical problems like the processing power, which makes this
approach impossible on current mobile robots. For this reason, we reduce our approach to
work with a 2D world representation. Here, we can use a real map of our lab (see fig. 3.7)
and the same static Kinect camera that records p(o|x, y, z) to detect the person position.
Note, that the implemented approach is not able to use the same amount of detail, espe-
cially on predicting the visibility of the person for cpodf . Nevertheless, the found solution
also produces reliable results by providing a much faster calculation time. This is shown
in table 3.2.

Resulting position Calculation time
mean variance tavg

x -3.1 m 13.1 cm update 32 ms - 64 ms
y 1.6 m 14.5 cm KDE 1.7 s
φ −95◦ 0.5◦ total 8.1 s - 4.9 s

Table 3.2: The comparing results of the 2D case. Here, the calculation of cpodf is done in
2D and speeds up the process significantly. Up to two cores of the robots hardware where
used. Note, that the resulting coordinates differ from the 3D case since a different map
was used.

With a variance of 14.5 cm, the found results are not as reliable as the 3D results, but
also provide also stable positions. Here, a 2.66 GHz Intel dual core processor is used,
running directly on the mobile robot. The results show calculation times of 5 - 10 seconds,

20

ALIAS D6.4

depending on the number of used cores, which are much faster than the 3D results and
lead to a usable system on todays robot hardware.

p(o|x)

d(x)

ot

p(o|x)

d(x)

ot

p(o|x)

d(x)

ot

v(x)

Figure 3.7: 2D map of our lab environment with the person occupancy density function
p(o|~x) as the original voxel representation, the drivable space from d(~x), and the visible
space v(~x) where the person ot could be observed. Note that ot is not visible here, since
it is covered by the blue voxel elements from p(o|~x). Also, the final observation position
is shown.

3.7 Conclusion

In this chapter, we have shown an approach, how to observe a person by also considering
positions, where the person usually sits, by providing a person occupancy distribution,
and using a variety of other criteria. We have also shown a 3D version of our approach,
which solves this problem in a 3D voxel grid. This solution turns out to be to slow to be
computed on actual robot hardware. For this reason, we show a simpler 2D version, which
also generates stable results and has the only drawback, that the visibility of the person
cannot be reliably predicted, giving only the occupancy map. This is a task we want
to solve in the future by learning the visibility using also the Kinect data and adapting
a visibility map during operation of the system. It is also planned to deploy a set of
experiments to show the influence of the different criteria towards the resulting position
and its stability. We also plan to include additional hard and soft criteria towards the
optimization problem. One planned hard criterion is, to keep the line of view from the
observed user towards "objects of interests" (like television, clocks or fish tanks) free from

21

ALIAS D6.4

the robot presence. Another possible soft criterion is, that the robot should not place itself
on paths, the person usually walks, which means that we simply have to extend p(o|~x)
and use this function for that purpose.

22

ALIAS D6.4

4 Actively avoiding the motion path of a moving person

When mobile robots operate in environments, like home environments or care centers, a
robot should take into account the inhabitants while moving around. In this chapter, an
approach is presented, which at the one hand predicts the movements of persons in a very
simple way, and on the other hand uses the predicted movements to plan a motion path.
We deploy a potential field approach to predict the person’s movement trajectory, and use
a modified Fast Marching planner to access a time-variable cost function for the planning
process. The goal of our development is an early avoiding behavior of the robot, when the
robot passes a person. This should increase the acceptance of the robot, when operating
in private homes, and signal a "busy"-behavior. Within the ALIAS project, the proposed
method is applied in the background and therefore transparent to all other modules.

4.1 Introduction

If mobile robots are used in everyday life, the acceptance of these robots should be good,
especially, when the users are non-expert users. As experiments show [28], humans tend
to observe a technical device, like a robot, as a social entity and project emotions on such
a machine. This causes the users to expect human-like behaviors from mobile robots.
Normally, the scenario of human-robot interaction is investigated, when the robot and
human want to interact in a dialog with each other. In our work we want to emphasize the
case of human-robot interaction, when the robot does not want to interact with a person.
In semi-public environments, like nursing-homes or hospitals, this is very often the case.
For example, when the robot is on a tour to collect food orders, or the robot has to drive to
its charging station an interaction with a passing person is not wanted. In such cases, the
robot has to signal its busy state. Even if humans do not want to interact with each other,
there is some kind of communication between them, known also as body language. These
human-human behaviors are quite complex and investigated deeply by psychologists. One
aspect of the body language is the theory of the personal space, founded by Hall [14]. In
our work, the spatial distance from Hall is used, which corresponds to "non interaction",
and which therefore represents a meaningful distance for a human being. All persons
(or robots), which keep a distance above this threshold, are interpreted as potential non-
interaction partners. In our work, we want to use a simple mathematical model of the
personal space, to allow the robot during the path planning phase to take into account the
predicted motion of an observed person. An non-intrusive path towards a predefined goal,
which does not touch the personal space of a person, is planned.

Related work: In the COGNIRON project a lot of work was done to investigate, if the
model of the personal space is also valid for human-robot interaction, and if the findings
are comparable to human-human interaction [5, 36]. These investigations found out, that

23

ALIAS D6.4

t0

t1

t2

a) b)

Figure 4.1: the idea of the presented approach: the robot should be able to politely pass
a moving person. To do so, the person path is predicted (see a)) and the personal space
of the person is used in a spatio-temporal planning process to compute a feasible path.
In b), a planning wave is propagated from the robot origin towards the goal (blue cross).
This wavefront could be deformed from the obstacles as well as from the moving personal
space from the predicted trajectory.

spatial configurations indeed carry information about the intention of a dialog act, and that
they are similar to the findings of Hall. In robotics, the personal space is used regularly
in tasks such as approaching a person [20, 35] and also path planning [33]. While the
person is approached, the method of [35] can deal with changing person positions in a
reactive way. The method of Sisbot[33] is only defined in an static environment, and
cannot deal with changing environment situations during the planning phase, but uses the
same simple personal space model than our approach. In [25], a rule based behavior was
constructed to pass a person in a feasible distance in straight floors. This behavior has the
same motivation than our method, but only works in floor-like environments and fails in
complex situations or environments like narrow door passages. Today, there are no further
known publications on the topic of politely passing a moving person with respect to the
person’s distances. However, there are many approaches which concern spatio-temporal
path planning, which is also the core technique of our approach. The most advanced
methods operate on planning trees. For example in [30, 21], lattice graphs are used to
create a tree with spatial and temporal information as long as the motion prediction of
the moving objects are certain. When the predictions become uncertain the algorithm
only uses the spatial knowledge to plan further. Anyhow, this algorithm is very time
consuming and is not processable in real time on a robot system. Another approach is
presented by [17] and [20], where expanding space trees are used to create a collision
free path in space and time to steer a robot. These approaches are very powerful in
terms of describing the spatial-temporal information and are fast to calculate, but are weak

24

ALIAS D6.4

when the robot deviates from the planned path. In this work, we use a modified standard
planning approach, where the robot is able to find an optimal path from every position in
space, even when deviations from the optimal path occur. A fundamental precondition
for spatio-temporal planning is the prediction of the motion trajectories of the observed
person. Here, a large set of prediction algorithms exist, mostly using probability densities,
which are build upon a large set of trajectory observations [18, 3]. The disadvantage of
these approaches is the need of an exhaustive data collection of trajectories over a long
time. We prefer an out-of-the-box approach, where the trajectory of a person is predicted
using the current motion direction and a potential field, presented in [17], to predict the
person movement for the next few seconds.

Presented approach: Our approach uses a modified version of the Fast Marching Method
(see [32]), to propagate a wavefront into the environment. The passing times of the wave-
front could be afterwards used to extract an optimal path. The passing time of the wave-
front is determined by physically correct simulation of the wave, and is directly related to
the physical abilities of the robot, like the maximal traveling speed, and the restrictions of
traveling speed coming from the static and dynamic environment. The static restrictions
are the obstacles. The dynamic aspects of the environment are considered to be the pre-
dicted motion trajectories of persons (and their personal space). As stated before, we use
a potential field method to predict the trajectory of the moving person. A brief overview
of the key idea of the presented approach is shown in figure 4.1.

4.2 Integration into the navigation software system

This module should completely replace the classical (static) path planning approach.
Thats why it is also designed as an objective with connected path planner. The only
modification is the usage of time during the planning process and the additional short
term prediction of person motion. The mechanism to follow the planned path is exactly
the same as in the standard module.
Note that, because of the ambiguity of both approaches, only one objective could be active
at a time!

4.3 Prediction of the person’s trajectory

In this section, the prediction method of the person trajectory is presented. We propose a
very simple, physically inspired model, also known as potential field. This model is very
often used in robot navigation to avoid obstacles or approach a target, but it is used here
to predict near future person movement. The key idea is to model the environment as a
set of point like electrical charges, which create an electrical field. This field could affect
other charges by applying a force towards them. Two forces are modeled to predict the
motion trajectory. On the one hand, the pushing forces of the obstacles are used, so the

25

ALIAS D6.4

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Figure 4.2: the "avoid person" software module within the navigation architecture. This
module is directly linked to the navigation core and completely replaces the classical path
planning module. So, only one of both modules could be active during operation.

person does not collide, and on the other hand, the pulling forces of a virtual target line in
front of the person are modeled.

4.3.1 The Potential Field

To compute the vector field of forces, a grid based world representation is used. If a cell
contains an obstacle, a negative charge is defined there. A free cell does not contain any
charge. The person itself represents also a negative charge and is attracted by a virtual
line of positive charges in the current motion direction of the person. An example setting
is shown in figure 4.3. To extract the impact of all charges, the definition of the electrical
field is applied to compute the resulting force. For a given set of charges in positions ~xi,
the field at a position ~x is defined as:

~E(~x) =
n∑
i=0

Q−i ·
~x− ~xi
|~x− ~xi|3

(4.1)

Note, that the resulting force on a negative charge is proportional to the vector ~E(~x). For
the static part of the environment, in each free cell the vector of the field could be pre-
processed. But, the resulting force is not only determined by the obstacle configuration,
it is also influenced by the virtual target of the person, resulting in a pulling vector field
~Etarget. This target assumes a tangential line with positive charges towards the current di-
rection of motion at a defined distance (see figure 4.3), and is in any case constant relative
to the person’s coordinate system. Since the resulting force could be also calculated as
shown in equation 4.1, for an infinite line the resulting force is a force towards the current
motion direction of the person. So, the resulting force is the vector sum of a force towards

26

ALIAS D6.4

-0.5-0.5 00 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5 44 4.54.5
-1-1

00

11

22

33

44

Q-

Q-Q-

Q-

Q-
Q-

Q
+ Q

+ Q
+ Q

+

E

Eobs

Etarget res

Figure 4.3: this image shows
the resulting vector field ~E(~x),
which is sourced by the neg-
ative charges of the obstacle
cells. The resulting force on
the moving person is defined
by two components. The push-
ing field Eobs of the obstacles
(blue) and the pulling force
Etarget of the virtual target line
(red). This results in a field
vector Eres (light blue), which
is proportional to the applied
force.

the current motion direction and a disturbing force, sourced by the obstacle configuration:

~F (~x) = Q−(~Eobs(~x) + ~Etarget(~x)) (4.2)

The idea of predicting the trajectory is, to simulate the movement by considering the
force ~F (~xj) in the currently predicted position ~xj and create the next motion vector and
position. It is easy to understand, that such an approach only needs a map of the cur-
rent environment and a valid person position and a valid walking direction to provide a
sufficient prediction of the person’s trajectory.

4.3.2 Motion Prediction

If the motion of a charged particle within the resulting force field should be processed,
the well known momentum equation could be used for that: m · ~vt+1 = m · ~vt + ~F ·∆t.
Here, m denotes the mass of the charged particle, ~vi denotes the speed at time i, and ∆t is
the time interval for one simulation step. Reformulated to ~vt+1 = ~vt + ~F/m ·∆t, it could
be seen, that the mass influences the update of the speed. With a huge mass, the speed
update is fairly slow and could lead to collisions. This changes, when the mass tends to
small values. Since a collision free path of the person should be constructed, the mass is
set to zero and only an approximation of the momentum equation is used to update the
current person speed:

~vt+1 = |~vt| ·
~F

|~F |
·∆t (4.3)

By re-defining the momentum equation, only the direction of the person prediction is
influenced by the potential field and the absolute value of the person speed is left constant.

27

ALIAS D6.4

The trajectory of the moving person is calculated by sequentially applying equation 4.3.
The predicted person’s path is used for the robot’s motion planning.

4.4 The Adapted Fast Marching Planner

As stated before, the Fast Marching Method approach from Setian [32] is used for robot
path planning. It is executed on a regular grid, where each grid cell contains a cost value
that physically reflects a speed, at which a virtual wavefront is able to travel through this
cell. In static cases, near zero values are assigned to obstacle cells, whereas high values
are assigned to free space. The advantage of this planner is, that all positive real values
can be applied to the map cells, while in most common planning approaches [6, 16] only
binary values could be used. This section describes briefly the original function of the Fast
Marching Method, and afterwards the changes applied to the classical approach. Here, the
main idea is to evaluate the speed, the waveform can travel through a cell element at the
time, the cell is reached by the wavefront. The wavefront thereby represents all positions,
the robot is able to reach at that given time. This is the main difference to other planning
approaches (e.g. E* [26]) that use the Fast Marching Method, where the traveling times
of the wave in each cell are only used to define the gradient a robot should follow, but
do not carry any real world information. The main benefit of the standard Fast Marching
Method is the ability, to construct monotonical raising functions with any configuration
of positive speed values, which is essential for a path planning algorithm.

4.4.1 The Fast Marching Method

Before the actual planning process starts, the given map is divided into obstacle and non-
obstacle cells by a simple threshold operation. Afterwards, the map is dilated by the
radius of the robot, so that obstacles now appear larger and a point-like robot can be
assumed. Now, a distance transform is performed to slow down the robot (and in this case
the traveling wave) when traveling near an obstacle. This setting defines a static velocity
value for each cell, which is vmax in free space and linear interpolated towards zero by
using the distance transform.
The general goal of the Fast Marching Method is the numeric solution of the so called
Eikonal equation ~v(~x)·|∆T (~x)| = 1. The solution of this equation describes the evolution
of a closed curve in time T , reacting on the different speeds ~v(~x) at the positions ~x. In
most cases the solution could not be found in closed form. Fast Marching proposes a
very simple numerical solution to this problem. The wave starts from a single point and
spreads to neighboring points by expanding grid cells, which are currently part of the
wavefront. In a regular grid, the neighbors are easy to find and added to an open list,
sorted by the interpolated travel times. Sequentially, the elements of the open list with the
smallest traveling time values are expanded and deleted from the list, until no expandable
cells remain. Each expansion step is done by interpolating the wavefront for the currently
observed cell element ~xi. For the interpolation of the cell element, the traveling times
T0, T1 and positions ~x0, ~x1 of the two neighboring elements with the shortest traveling

28

ALIAS D6.4

a)

x

y

x ,T
0 0 x ,T

1 1

x ,V(x)i

r 0 r 1

s 0

s 1

i

d
T=r /V i i

b1) b2)

t t+∆t

∆t

t+2∆t

Figure 4.4: in image a), the details of the interpolation of one cell element of the wave-
front are shown. Blue values are the given ones, while black values are computed. The
red values describe the final step of interpolation, where from the virtual wave sources s0

or s1 the passing time of the wavefront is calculated. On the right side b) a full simula-
tion step is shown, where the personal space intersects the wavefront. Note, that only the
blue elements of the wavefront investigating the current speed configuration, while the
computed values remain unchanged. The wavefront is only updated with the current con-
figuration until the elements reach the simulation time t+ ∆t, shown in b1). Afterwards,
the speed configuration is updated to t + ∆t and the propagation of the wave runs until
t+ 2∆t is reached (see b2)).

times are needed. Also the current valid speed of that cell v(~xi) has to be known. In the
first step, the positions ~s0, ~s1 of possible sources of the wavefront are calculated:

r0 = v(~xi) ∗ T0

r1 = v(~xi) ∗ T1

sx = (d2 + r2
0 − r2

1)/2d

sy = ±
√
r2
0 − s2

x

~s0 = 〈sx ; +sy〉
~s1 = 〈sx ; −sy〉

Here, d is the distance between ~x0 and ~x1 and defines the X-axis of the solution. As seen
in figure 4.4a), there exist two possible sources ~s0, ~s1 of the wave origin to reach ~x0 in T0

and ~x1 in T1. The most distance source to our point ~xi is chosen, since the point ~xi would
already have been interpolated if the nearest source is correct. With the correct source ~sj ,
the interpolation of the wave crossing time at position ~xi is trivial:

Ti =
|~xi − ~sj|
v(~xi)

(4.4)

29

ALIAS D6.4

Note, that for very small values of the traveling speed, the passing time Ti will become
very large and such elements of the open list are expanded only in the end. This is the
case when the wave hits an obstacle cell or the personal space in our case.

4.4.2 Adaptation for Predicted Motions

To adapt the described interpolation method to time variant traveling speeds of v(~xi, t), a
number of changes are necessary. First, the planning direction is reversed. Normally, a
path from the target position to the current robot’s position is planned. Since the traveling
times of the wave have in our case a physical meaning, and to fuse the motion predic-
tion with the planning process, the path is planned from the robot towards the goal. This
means, the current robots position is the source of the wavefront. Second, the fusion pro-
cess is the fundamental change in wavefront propagation. Hereby, the system starts from
a time t0 and updates the prediction of the person movement as well as the propagation
of the wavefront in time intervals ∆t. The obstacle and world configuration are assumed
to be static in this time interval, and the wave traveling is continued only in this short
interval. This means for the n-th planning step, that only those elements from the open
list are expanded, whose travel times are smaller than to + n · ∆t and for the expanded
elements, the dynamic speed function v(~xi, t0 + n ·∆t) is evaluated.
The dynamic speed function consists of two parts: the static part vst(~xi) from the obstacle
configuration, described in section 4.4.1, and a dynamic part vdyn(~xi, t0 +n ·∆t), coming
from the predicted motion trajectory of the person and their corresponding personal space:

vst(~xi) =

{
vmax · d(~xi)−dmindmax−dmin , if d(~xi) ≤ dmax
vmax , else

(4.5)

vdyn(~xi, t0 + n ·∆t) = 1− exp
(
−|~xi − ~xp(t0 + n ·∆t)|2

2πσ2
p

)
(4.6)

Here, d(~xi) is the distance to the next obstacle cell, described by the distance transform of
the map, and ~xp(t0+n·∆t) is the predicted position of the person at the current simulation
time. The personal space is set to be above 2.6 meters to symbolize non-interaction, and
so, the value of σp is set to 2.6 meters. The fusion is done by a simple minimum operation:

v(~xi, t0 + n ·∆t) = min(vst(~xi), vdyn(~xi, t0 + n ·∆t)) (4.7)

4.4.3 Following the Calculated Path

The planning is complete, if the wavefront has reached the predefined target cell. Note,
that our approach also calculates when the target is reached. At this point each cell, passed
by the wavefront, contains the passing time. The needed driving path is calculated by per-
forming a gradient descent from the target cell towards the robot’s original position. The
robot has to follow this path as good as possible with the defined speeds, also calculated

30

ALIAS D6.4

during the planning process. Note, if the person deviates to much from the predicted path
in space and time, a replanning has to be performed. This is triggered, if the three dimen-
sional Euclidean distance |(xpredp − xobsp), (ypredp − yobsp), (tpred − tobs)| is above a certain
threshold (in our case also 2.6).

31

ALIAS D6.4

4.5 Experiments and Results

b)a)

Figure 4.5: in a), an example of the force field is shown, which is used for motion predic-
tion. In b) the function of the passing times of the wave is shown. From this function the
resulting path is created by gradient descent from the target towards the robot’s position.
It can be seen, that the traveling time raises, when the wavefront hits the personal space
of the person. A detailed view of that part of the function is shown on the right.

During the experiments, two scenarios with different characteristics where evaluated. In
the first scenario, a person moves on a straight line in the narrow space of our living lab
and the robot has to plan a path which crosses this line. In the second scenario, the person
meets the robot in a wide corridor. The person moves also in a straight line and the robot
should approach a goal by driving in the opposite direction and also has to plan a path to
avoid the person. Both scenarios are based on real world map data of our institute. The
map is 15m x 100m and has a map resolution of 10cm per cell. Person detection and
tracking is done by using a laser based leg detector, based on the approach of Arras [2].
The resulting planning function and the associated cell speeds, which correspond to the
passing time of the wavefront, are shown in figure 4.6 for the narrow space scenario and
figure 4.7 for the passing scenario. It can be seen, that in both cases the personal space of
the moving person slows down the wavefront and guides the wavefront around the person.
When the goal is reached by the wavefront, gradient descent is used to extract the optimal
path.
To provide a practical system, the robot should be able to plan this path much faster than
real time. In fact, it must be possible to plan the path in a fraction of a second for multiple
seconds beforehand. We measure the average runtime of the algorithm with different
prediction intervals ∆t for a total prediction period of 10 seconds. Smaller time intervals
∆t mean more accurate motion prediction and wave propagation. Table 4.1 shows the
results of the runtime investigation. In average, the method is capable of simulating 13
times faster than real time. The simulation step time of 0.5 seconds is used for the motion
prediction of the person and the update of the planning function, since this time provides

32

ALIAS D6.4

t=1s t=2s t=4s t=8s

Figure 4.6: propagation of the planning wave in a narrow space. The robot starts on the
left side and has to reach the goal on the lower right. The person is located at the bottom
(multiple bright circles) and walks through the room. The wavefront travels through the
room until the target is reached and avoids the personal space. Finally, with gradient
descent a path is extracted from the wave’s passing times. The final path is shown as a
dashed line, whereas the planned path without a person is shown as a solid line. Note
that every two seconds in simulation time the color of the wavefront changes from red
to green. Below the traveling time function the used cell speeds are shown, which are
calculated when the wavefront passes the cells. Blue correspond to slow traveling speeds,
while red corresponds to high traveling speeds.

maximal accuracy by providing still good performance. The simualtion of ten seconds of
motion can be done in 770 milliseconds.
The calculation of the force field ~Eobs is constant for the given map and is done once
before the algorithm starts. Since this is a time consuming operation, it took 10.3 seconds
for the given map of the lab building to build the vector field. For the experiments a
standard dual core mobile processor with 2.66 GHz was used. Only one core does the
wavefront propagation since this is a highly sequential task and it is hard to parallelize
this algorithm.

33

ALIAS D6.4

t=2s t=6s t=10s t=14s

Figure 4.7: propagation of the planning wave on a floor. The robot starts on the left
side and has to reach the goal on the upper right. The person is located at the right side
(multiple bright circles) and walks through the corridor towards the left. The wavefront
travels through the room until the target is reached and avoids the personal space. Finally,
with gradient descent a path is extracted from the wave’s passing times. The final path is
shown as a dashed line, whereas the planned path without a person is shown as a solid
line. For a further description of the lower series of pictures, refer to image 4.6.

4.6 Conclusion and future work

In this chapter, an approach for spatio-temporal path planning with regard of one moving
person is shown. Up to this stage, the problem of re planning is only addressed when the
person deviates from the predicted path. At the one hand, this behavior of the robot has to
be investigated in further experiments. At the other hand, an investigation has to be done,
what happens if the robot could not keep track of the planned path and planned time and
deviates from the given task. The approach could be easily extended towards usage of
multiple persons, but may need in this case a more complex prediction model. Also, the
planning process could be further improved by optimizing the execution speed and try to
parallelize the most time consuming operation of wave propagation.

Simulation Step ∆t=3s ∆t=1.5s ∆t=0.5s ∆t=0.2s
tavg 75ms 75ms 75ms 89.2ms
tσ 72ms 35ms 18ms 13.4ms

Speed factor 13 13 13 11

Table 4.1: overview of the achieved computation times for different time steps ∆t. Here,
tavg is the average computation time, while tσ is the variance of the computation time per
iteration step. On larger time steps up to 0.5 seconds the system is able to predict and plan
13 times faster than real time. Only on small simulation steps, this factor begins to lower.
In test runs a simulation time of 0.5 seconds is chosen.

34

ALIAS D6.4

5 Robot Remote Control

5.1 Introduction

During this chapter we will describe our approach to make the robot remote controllable.
Note, that this is a very simple approach and so we will not discuss, what other approaches
exist, since this discussion will not have significant value towards the reader. The need
of this module emerges during the user trials and questionnaires, where the users demand
the need of some kind of security feature. An exact description, what this feeling for
security means, was not given. So, the consortium decided to enable the robot to be
remote controllable and to send video images towards the controller. It is clear, that only
certified and authorized persons should be able to see those video images.

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

“Dynamic Window”
motion controlTask

Configuration

Follow path

Path planner

ON

OFF

Collision
avoidance

ON

OFF

Remote
Control

ON

OFF

Approach
person

ON

OFF

Path planner

Avoid
person

ON

OFF

Spatio-temporal
path planner

Find
observation

position

Dialog
manager

Figure 5.1: the "remote control" software module within the navigation architecture. This
module is directly linked to the navigation core.

The main task of this module is, to make the robot steerable by a remote person in case of
emergency. How a case of emergency is exactly defined, relies within the domain of the
user inclusion work group of work package one. Here, only the functionality is defined
and implemented. The core ability should be, to control the robot to drive in the defined
direction without collision, and give some obstacle feedback to the remote controlling
person.

5.2 Remote Architecture

Since the mathematical background of this task is quite simple, the main challenge here
is the transfer of control data from the remote control client towards the server and in
the other direction the sensor feedback from the obstacle situation from server (robot) to
client. See figure 5.2 for the definition of the client and server.

35

ALIAS D6.4

We use the AngleScript interface from MetraLabs to send the command data and the laser
data between client and server. The skype API is used to transfer audio and video data
from client to server. In the next sections, the details of data flow, and the mathematical
realization of the remote control, are shown.

Remote Control Client /
Backend Remote Control Server

Figure 5.2: the network configuration during the remote control process. The robot is
steerable with the Wii remote controller, which is connected via Bluetooth to the remote
client. The client uses a standard TCP/IP connection to the remote server (the robot).
Over this connection the wished user speed is transferred from the client to the robot and
laser distance data plus video and audio data are transferred from the robot to the client.

5.2.1 Remote Back end

The remote back end is the client side of the remote control and is designed to work on
every standard PC with network access. A Wii controller is connected to the client PC via
Bluetooth and the steering cross buttons or the nunchuck joystick could be used to control
the robot. From the controller, pairs of rotation speed and translation speed 〈Vrot, Vtrans〉
are send frequently. These speeds are evaluated on the server side, if they are feasible and
if it is necessary to deviate from the wished speed configuration to avoid collisions. The
deviation is done by the robot in an autonomous fashion.

36

ALIAS D6.4

Figure 5.3: the remote back end. The robot is controlled by the Wii controller. The
commands are send to the robot and the current laser scan is sent back and visualized on
the screen. Since the robot has a diameter of 0.6m, the user can estimate the distance
towards the next obstacle. Note, that the robot’s front direction is marked by the red line
in the circle. Free space is shown in white, while walls are shown in blue color.

The client side is responsible to open the TCP/IP connection towards the robot, to connect
to the Wii controller and, most important, to display the last laser scan to visualize the
current obstacle situation. It also sends new driving speed commands to the robot. These
commands are evaluated on the server side. Note, that also a Skype session could be
started, to initiate or accept a video conference with the robot’s user or to investigate the
emergency situation, but this is handled by the dialog manager.

5.2.2 Remote Control Objective

On the server side, the send speed commands 〈Vrot, Vtrans〉 are received and evaluated.
This is done by a remote control objective, which has to be activated from the dialog
manager when an emergency situation occurs. The activation of the remote control is by
default not coupled to a video call, but both functionalities could be combined. Since the
remote control objective is just one part of the whole navigation setup, also the obstacle
avoidance is activated during the remote control process and those, the aspect of obstacle

37

ALIAS D6.4

avoidance has not to be considered within this objective. The only task is, to support the
defined speed pair, given by the user. We suggest, that it is no sharp decision the remote
controller sets, when steering the robot with the controller. All speed combinations nearby
the given speed pair have to be supported also by the system and should be treated as an
alternative.

Vrot

Vtrans

metric space

remote objective

speed action space

defined speed
from user

nearest collision
free action

Figure 5.4: the voting process within the dynamic window: in each step, the dynamic
window evaluates a set of speed actions which in term lead to a specific trajectory. The
user defines one speed pair, which lead to the wanted trajectory (green on the left side).
Our objective votes this speed pair best. But other, nearby speed pairs will also given a
good vote, since they reflect also the "will" of the remote controller. This is done by a
Gaussian function. So, if the wished speed is not possible (due to a collision), the next
best, collision free action is chosen automatically by the dynamic window approach.

Luckily, the dynamic window approach operates in the speed domain. A rasterized set of
speed pairs

〈
V

(i)
rot , V

(i)
trans

〉
is evaluated in each step and the best action is selected. Hereby,

the collision avoidance marks all actions, which lead to a collision in the next step, as not
feasible. From the remaining actions, the best is chosen. We vote for each of the speed
pairs by using a Gaussian function centered at the given user speed 〈V u

rot, V
u
trans〉:

f(V
(i)
trans, V

(i)
rot) = e

(V
(i)
rot−V

u
rot)

2+(V
(i)
trans−V

u
trans)

2

σ2 (5.1)

Here, only σ is a free parameter to define the range of equally good speed alternatives
with a high vote, and so, how much room for alternative decisions is left for the robot.
Note again, that the remote control objective does not check for collisions. This is done
by another objective, which could be re-used for our purpose.

38

ALIAS D6.4

6 Conclusions

In this deliverable, we showed the update of the navigation system with some new mod-
ules like the person avoidance module, the remote control module (with back end), and
the observation module. In figure 6.1 the whole robot system is sketched to give a brief
summery, where these modules belong to and how they interact with the overall system.

NavigationTask

Find
observation

position

Dialog
manager

Person
detection

Command

Robot
hardware

Speech
recognition

GUI /
Applications

Figure 6.1: system overview: while the observation module is only loosely coupled to
the navigation system, the remote control objective and person avoidance module belong
directly to the navigator. The observation module and person avoidance module need the
input of the person detector.

Note, that the navigation system is interfaced only by giving tasks and configuring the
active objectives. This could only be done be the dialog manager (and with the help of
AngleScript). The core of the navigation system, consisting of the dynamic window and a
set of objectives, needs the help of several subsystems, like person detection, localization
and map-building. These techniques are not described in this deliverable, since they are
used "as is" and no further improvements are done in these sectors.
From the presented modules, only the observation module is loosely coupled towards the
navigation system. The remote control and the person avoidance are very closely coupled
towards the navigator, since these modules are objectives of the dynamic window. The
person avoidance module should replace the normal "drive to goal" objective and only

39

ALIAS D6.4

changes the behavior when approaching a goal, while the remote control objective extends
the functionality of navigation system towards an new operation mode.

6.1 Outlook

With the described functionality of this deliverable, the development work within the do-
main of navigation is nearly done. In the time period to the next deliverable, we will
mainly test our approaches and improve details like person detection, runtime optimiza-
tion and so on. Additionally, we will deal with an autonomous map building and setup
process, since it showed in our user tests, that an expert has to build the map and this
should be also do-able by a standard technician. This functionality should be imple-
mented more user centered and this problem will be addressed during the remaining re-
porting time.

40

ALIAS D6.4

Bibliography

[1] Openni framework, 2011. http://openni.org/Documentation/.

[2] K. Arras, O. Mozos, and W. Burgard. Using boosted features for the detection of
people in 2d range data. In Proc. ICRA, 2007.

[3] A. Bruce and G. G. Gordon. Better motion prediction for people-tracking. In Proc.
ICRA, 2004.

[4] Z. Byers, M. Dixon, K. Goodier, C. Grimm, and W. Smart. An autonomous robot
photographer. In Proc. IROS, pages 2636–2641. IEEE, 2003.

[5] K. Dautenhahn et al. How may i serve you? a robot companion approaching a seated
person in a helping context. In Proc. HRI, pages 172–179, 2006.

[6] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[7] E. Dunn, J. van den Berg, and J.-M. Frahm. Developing visual sensing strategies
through next best view planning. In Proc. IROS, pages 4001–4008. IEEE, 2009.

[8] R. Eberhart and Y. Shi. Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In Proc. of the Congress on Evolutionary Computation,
volume 1, pages 84–88, 2000.

[9] R. Eberhart and Y. Shi. Particle swarm optimization: developments, applications
and resources. In Proceedings of the 2001 Congress on Evolutionary Computation,
volume 1, pages 81–86, 2001.

[10] E. Einhorn and T. Langner. Pilot-modular robot navigation for real-world-
applications. In Proc. 55th International Scintific Colloquium, 2010.

[11] D. Fox, W. Burgard, and S. Thrun. The dynamic window approach to collision
avoidance. In IEEE Robotics and Automation Magazine, pages 23–33, 1997.

[12] H.-M. Gross, H.-J. Boehme, C. Schroeter, S. Mueller, A. Koenig, E. Einhorn,
C. Martin, M. Merten, and A. Bley. Toomas: Interactive shopping guide robots
in everyday use - final implementation and experiences from long-term field trials.
In Proc. IROS, pages 2005–2012. IEEE, 2009.

[13] H.-M. Gross, C. Schroeter, S. Mueller, M. Volkhardt, E. Einhorn, A. Bley, C. Martin,
T. Langner, and M. Merten. I’ll keep an eye on you: Home robot companion for
elderly people with cognitive impairment. In Proc. on IEEE Int. Conf. on Systems,
Man, and Cybernetics (IEEE-SMC 2011), pages 2481–2488. IEEE, 2011.

41

ALIAS D6.4

[14] E. Hall. The hidden dimension. Doubleday, NY, 1966.

[15] E. Hall. Proxemics. Current Anthropology, 9(2):83++, 1968.

[16] E. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems, Science and Cybernetics,
4:100–107, 1968.

[17] F. Hoeller, D. Schulz, M. Moors, and F. Schneider. Accompanying persons with
a mobile robot using motion prediction and probabilistic roadmaps. In Proc.IROS,
pages 1260Ű–1265, 2007.

[18] T. Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita. A communication
robot in a shopping mall. IEEE Transactions on Robotics, 26(5):897–913, 2010.

[19] J. Kessler. D6.3: First navigation software module. 2011.

[20] J. Kessler, A. Scheidig, and H.-M. Gross. Approaching a person in a socially ac-
ceptable manner using expanding random trees. In Proc. 5th European Conference
on Mobile Robots (ECMR), pages 95–100, 2011.

[21] M. Likhachev and D. Ferguson. Planning long dynamically-feasible manuevers for
autonomous vehicles. Int. Journal of Robotics Research, 28(8):933–945, 2009.

[22] K. Low and A. Lastra. Efficient constraint evaluation algorithms for hierarchical
next-best-view planning. In Third International Symposium on 3D Data Processing,
Visualization, and Transmission, pages 830–837, 2006.

[23] X. Ma, C. Hu, X. Dai, and K. Qian. Sensor integration for person tracking and
following with mobile robot. In Proc. IROS, pages 3254–3259, 2008.

[24] A. Mertens, U. Reiser, B. Brenken, M. Luedtke, M. Haegele, A. Verl, C. Brandl, and
C. Schlick. Assistive robots in eldercare and daily living: Automation of individual
services for senior citizens. In Proc. of 4th International Conference on Intelligent
Robotics and Applications, pages 542–552. Springer LNAI 7101, 2011.

[25] E. Pacchierotti, H. Christensen, and P. Jensfelt. Evaluation of passing distance for
social robots. In Proc. RO-MAN, 2006.

[26] R. Philippsen. Motion Planning and Obstacle Avoidance for Mobile Robots in
Highly Cluttered Dynamic Environments, PHD Thesis. Univ. of Toulouse, Ecole
Polytechnique Federale de Lausanne, 2004.

[27] M. Piaggio, R. Fornaro, A. Piombo, L. Sanna, and R. Zaccaria. An optical-flow
person following behaviour. In Proceedings of the IEEE ISIC/CIRA/ISAS Joint Con-
ference, pages 301–306, 1998.

42

ALIAS D6.4

[28] B. Reeves and C. Nass. The Media Equation: How People Treat Computers, Televi-
sion, and New Medial Like Real People and Places. CSLI Press, Stanford, 1996.

[29] M. Rosenblatt. Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27:832–837, 1968.

[30] M. Rufli and R. Siegwart. On the application of the d* search algorithm to time-
based planning on lattice graphs. In Proc. ECMR, pages 105–110, 2009.

[31] C. Schroeter, M. Hoechemer, S. Mueller, and H.-M. Gross. An autonomous robot
photographer. In Proc. ICRA, pages 424–429. IEEE, 2009.

[32] J. Sethian. A fast marching level set method for monotonically advancing fronts.
Proc. Nat. Acad. Sci., 93(4):1591–1595, 1996.

[33] E. Sisbot. Towards Human-Aware Robot Motions, PHD Thesis. Univ. of Toulouse,
Toulouse, 2006.

[34] M. Strand and R. Dillmann. Using an attributed 2d-grid for next-best-view planning
on 3d environment data for an autonomous robot. In Proc. ICRA, pages 314–319,
2008.

[35] M. Svenstrup, S. Tranberg, H. Andersen, and T. Bak. Pose estimation and adaptive
robot behaviour for human-robot interaction. In Proc. ICRA, pages 3571Ű–3576,
2009.

[36] L. Takayama and C. Pantofaru. Influences on proxemic behaviours in human-robot
interaction. In Proc. IROS, pages 5495–5502, 2009.

43

	Introduction
	System Overview
	Finding a good position to observe a person in an unobtrusive way
	Introduction
	Integration into the navigation software system
	Formulation of the optimization problem
	Boundary conditions
	The optimization function
	Particle swarm optimization

	The 3D case
	Data structures
	Realization of the single criteria
	Problems

	The 2D case
	Data structures
	Realization of the single criteria

	Experiments
	Finding positions in 3D
	Finding positions in 2D

	Conclusion

	Actively avoiding the motion path of a moving person
	Introduction
	Integration into the navigation software system
	Prediction of the person's trajectory
	The Potential Field
	Motion Prediction

	The Adapted Fast Marching Planner
	The Fast Marching Method
	Adaptation for Predicted Motions
	Following the Calculated Path

	Experiments and Results
	Conclusion and future work

	Robot Remote Control
	Introduction
	Remote Architecture
	Remote Back end
	Remote Control Objective

	Conclusions
	Outlook

