

AAL Joint Programme

Ambient Assisted Living user interfaces

AAL-2010-3-070

 AALuis i

Project Identification

Project number AAL-2010-3-070

Duration 1st July 2011 – 30th June 2014

Coordinator Christopher Mayer

Coordinator Organisation AIT Austrian Institute of Technology GmbH, Austria

Website www.aaluis.eu

Ambient Assisted Living
user interfaces

Document Identification

Deliverable ID: D2.1 Report on Middleware Analysis

Release number/date V1.0 / 30.12.2011

Checked and released by Martin Morandell/AIT

Key Information from "Description of Work"

Deliverable Description This document describes the criteria and findings of the middleware
analysis, as well as findings of research on personalization and user
(interaction) profiling.

Dissemination Level PU=Public

Deliverable Type R = Report

Original due date Project Month 4 / 31. October 2011

Authorship& Reviewer Information

Editor Kai Hackbarth / ProSyst

Partners contributing AIT, PHIL, VERK

Reviewed by Miroslav Bojic / PHIL

D2.1 Report on Middleware Analysis

 AALuis ii

Release History

Release
Number

Date Author(s) Release description /changes made

V01 15.02.2011 MMo/AIT First version of Del Template

V02 15.05.2011 MMo/AIT Title Page, Contract Number, some Structure
elements

V03 06.10.2011 MG/AIT Content

V04 19.10.2011 HH/VERK Content

V05 19.10.2011 PHIL Content

V06 19.12.2011 PHIL Internal Review

V1.0 30.12.2011 KH/ProSyst Contribution by all partners and final editing

D2.1 Report on Middleware Analysis

 AALuis iii

AALuis Consortium
AALuis (AAL-2010-3-070) is a project within the AAL Joint Programme Call 3. The
consortium members are:

Partner 1 AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GmbH
(AIT, Project Coordinator, AT)

Contact person: Christopher Mayer

Email: christopher.mayer@ait.ac.at

Partner 2: weTouch e.U. (weT, AT)

Contact person: Christian Schüler

Email: Christian.schueler@wetouch.at

Partner 3: Centre for Usability Research & Engineering (CURE, AT)

Contact person: Jan Bobeth

Email: bobeth@cure.at

Partner 4 zoobe message entertainment GmbH (Zoobe, DE)

Contact person: Sascha Fagel

Email: Fagel@zoobe.com

Partner 5 Verklizan BV (Verk, NL)

Contact person: Matti Groot

Email: mgroot@verklizan.com

Partner 6 ProSyst Software GmbH (PRO, DE)

Contact person: Kai Hackbarth

Email: k.hackbarth@prosyst.com

Partner 7 50plus GmbH (50plus, AT)

Contact person: Tanja Bosch

Email: tanja.bosch@seniorenbund.com

Partner 8 Hilfswerk Österreich (HWOe, AT)

Contact person: Walter Marschitz

Email: walter.marschitz@hilfswerk.at

Partner 9 Philips Consumer Lifestyle B.V. (PHIL, NL)

Contact person: Kees Tuinenbreijer

Email: kees.tuinenbreijer@philips.com

D2.1 Report on Middleware Analysis

 AALuis iv

Table of Contents

Release History II
AALuis Consortium III
Table of Contents IV

Table of Figures VI
List of Tables VII
Abbreviations VIII
Executive Summary 9
1 About this Document 10

1.1 Role of the document 10
1.2 Relationship to other AALuis deliverables 10

2 Criteria for the Middleware Analysis 11
3 Analysis of available AAL Middlewares 11

3.1 AMIGO 11
3.1.1 AMIGO Layer model 12

3.2 MonAMI 14
3.2.1 MonAMI Layer model 16

3.3 Universal Remote Console, Universal Control Hub 18
3.3.1 URC Layer model 21

3.4 UniversAAL 22
3.4.1 UniversAAL Layer model 23

3.5 Philips NetTV 25
3.5.1 Philips NetTV Layer model 26

3.6 Verklizan UMO Platform 27
3.6.1 Verklizan UMO Platform Layer model 28

3.7 How is the middleware interacting with other parts 29
3.8 Interoperability & Standardization, Extendibility, Accessibility & Usability 30

4 Area 4: Personalization and User (Interaction) Profiling 31
4.1 In which aspects is user profiling important on your level? 31
4.2 Cross Platform User Profiles WP2/3 31

4.2.1 ETSI – User Profile Management 31
4.2.2 MASP (Multi-Access Service Platform) 32
4.2.3 UserML and GUMO (General User Model Ontology) 32
4.2.4 User Preferences and Device Capabilities Profiles 33

D2.1 Report on Middleware Analysis

 AALuis v

4.2.5 Rule-based Adaptation Strategy 33
4.3 Accessibility Profiles WP2 34

4.3.1 The Common Accessibility Profile (CAP) 34
4.3.2 SEMA4A – Simple Emergency Alerts 4 [for] All 34
4.3.3 AccessOnto - Ontology for Accessibility Requirements Specification 34
4.3.4 UI Adaptation System 34

References 36

D2.1 Report on Middleware Analysis

 AALuis vi

Table of Figures

Figure 1: Building Blocks of the AMIGO architecture 12
Figure 1: Building Blocks of the MonAMI architecture [24] 14
Figure 2: The MonAMI platform 15
Figure 3: User Interfaces in the MonAMI project [25] 16
Figure 4: Layers of the URC architecture 19
Figure 5: Logical view of the UCH architecture [19] 20
Figure 6: UCH architecture [20] 20
Figure 7: Platform from [27] 22
Figure 8: The UniversAAL architecture as described in [2] 23
Figure 9: Philips NetTV architecture, basic overview. Services are hosted on external, 3rd
party servers. The TV users connect directly to the Philips Services Portal. After selecting
a service, a direct link is created with the service provider. The whole experience is
integrated with the remaining TV functions (EPG). 26
Figure 10: Class interaction model for UP/UPM based on use case model [4]. 31
Figure 11: UPM system model [5] 32
Figure 12: Concept of centralized, distributed and isolated mobile user modelling [8]. 33
Figure 13: AccessOnto framework [17]. 34
Figure 14: Structure of the information model [18]. 35

D2.1 Report on Middleware Analysis

 AALuis vii

List of Tables

Table 1: Template for Middleware Analysis: 11
Table 2: AMIGO Layer model 12
Table 3: MonAMI Layer model 16
Table 4: URC Layer model 21
Table 5: universAAL Layer model 24
Table 6: Philips NetTV Layer model 27
Table 7: Verklizan UMO Layer model 29
Table 8: Interaction with other parts 29
Table 9: Interoperability, Standardization, Extendibility, Accessibility, Usability 30

D2.1 Report on Middleware Analysis

 AALuis viii

Abbreviations

Abbrev. Description

AAL Ambient Assisted Living

AAL JP Ambient Assisted Living Joint Programme

AALuis Acronym of this Project – Ambient Assisted Living user Interfaces

D2.1 Report on Middleware Analysis

 AALuis 9

Executive Summary

AALuis intends to develop a User Interface Layer that facilitates the connection of any kind
of service with different types of user interfaces, such as smartphones, tablets, TVs, PCs
or voice. In the past years there has been a lot of funding in the development of
middleware technologies in the AAL domain, which is why AALuis will not develop its own
middleware. The aim of the AALuis User Interface Layer is to be as much independent of
the middleware technologies as of the user interfaces itself.

Work package 2 conducted a research on what we think are the most promising AAL
middleware technologies and how we can make use of them in the context of AALuis.
Besides a general description and an overview of the layer model, we also defined various
criteria that formed a basis for analysis of AAL middlewares. Examples of these criteria are
the status of the project/technology, openness in terms of how easy it can be used by
others, functionality richness, how communication with devices and services work. In
addition to AAL middleware technologies that were developed in research projects we also
analysed the middleware technologies provided by our project partners Philips and
Verklizan.

Work package 2 also made a state-of-the-art analysis on personalization and user profiling
as we want to design and develop a user interface layer that takes both aspects into
account.

D2.1 Report on Middleware Analysis

 AALuis 10

1 About this Document

1.1 Role of the document
This document provides an overview of Ambient Assisted Living middlewares’ developed
in various research projects as well as from AALuis partners Philips and Verklizan. The
technical analysis compares AAL middlewares by looking into aspects such as general
architecture, interoperability with external systems / services as well as whether and how
the AALuis User Interface Layer can be built on top.

1.2 Relationship to other AALuis deliverables
The deliverable is related to the following AALuis deliverables:

Deliv: Relation

D2.2 Handbook AALuis Layer Specification: this document specifies the AALuis User Interface
Layer and how it can be integrated with already existing AAL middlewares’ described in
D2.1.

D3.1 Report on User Interface Analysis: this document provides an overview of innovative user
interfaces for ambient assisted living environment. Complementary analysis in WP3.

D4.1 Report on Service Application Analysis: this document provides an overview of innovative
ambient assisted living service applications. Complementary analysis in WP4.

D2.1 Report on Middleware Analysis

 AALuis 11

2 Criteria for the Middleware Analysis
Middleware analysis criteria

Status • What is the current status of the project/technology?

• What is commercial impact of the project/technology?

Openness • Availability of the results incl. terms and condition as well as
licenses

• Is there a e.g. developer community and how are they
supported?

• How well is the technical documentation?

Richness • Overview of most important functionalities

• What are interesting / important components in the context of
AALuis?

Communication • How is service and/or UI discovery realized?

• How can AALuis be integrated?

Table 1: Template for Middleware Analysis:

In addition we created a table for each of the middlewares to describe their layered
architecture. The cell “AALuis use” is intentionally empty for now. These cells will be filled
when AALuis architecture has been designed.

3 Analysis of available AAL Middlewares
3.1 AMIGO
AMIGO was a research project funded by the 6th Framework Programme from the
European Commission. AMIGO developed a middleware that allowed dynamic integration
of heterogeneous systems to achieve interoperability between services and devices. The
high-level architecture can be found below:

D2.1 Report on Middleware Analysis

Figure 1: Building Blocks of the AMIGO architecture

3.1.1 AMIGO Layer model
Layer Description AALuis use

Applications &
Services

Amigo-aware applications and services
exploit the full functionalities of the
underlying base middleware. Legacy
services do not have any knowledge of the
AMIGO middleware layer, but are
implemented on some legacy service
service oriented middleware.

Base Middleware Provides the semantics to communicate
and discover available services and devices
in the network. Supports technologies like
UPNP, WS, or SLP. Security mechanisms
for authentication, authorisation, and
encryption are provided as well.

Intelligent User
Services

A broker provides context information and
combines information from multiple source.
Based on this, pattern-based predictions
will be done. The Information is tailored to
user profiles and adapts taking into the
account the user’s situation as well as the
context.

Programming and
Deployment
Framework

Facilitates the development of AMIGO-
aware services in either .NET or Java.
AMIGO abstracts several protocols for
communication and discovery, so that
service can be integrated independent from
the underlying hard- and software
technologies

Table 2: AMIGO Layer model

 AALuis 12

D2.1 Report on Middleware Analysis

 AALuis 13

Status:
AMIGO was an Integrated Project funded by the 6th framework of the European
Commission. The project consortium consisted of the following partners:

- VTT
- Orange
- Inria
- University of Paderborn
- Fraunhofer SIT
- Fraunhofer IMS
- Microsoft
- SingularLogic
- ICCS
- Giugiaro
- Ikerlan
- Telefonica
- Fagor
- Philips (Project Coordinator)
- Telematica Institute

The project had a duration of 3½ years and finished in 2007. There is no evidence whether
any of the results have been reused in other research projects or product developments.
Openness:
Some of results have been released as open source (incl. software developer and users
guides) and can be downloaded from the Inria website. Most of the components are under
LGPL open source license. Some components have a Microsoft and Philips specific
license that allows their use for non-commercial activities.
Richness / Functionality:
AMIGO did not develop any AAL specific components or services. The scenarios were
focussing in the areas of home information and entertainment, home care and safety as
well as extended home environment. Functionalities implemented by the project including
context management service, awareness and notification, privacy and security, user
modelling and profiling, content distribution, accounting and billing, as well as user
interface services.
Communication:
Service discovery is realized by the standardized mechanisms provided by the OSGi
middleware and .NET platform. Besides this the project implemented an interoperable
service discovery and interaction middleware that converts incoming/outgoing messages
from protocol to another. Supported Technologies are UPnP, SLP, Web Services, SOAP
and RMI.

D2.1 Report on Middleware Analysis

3.2 MonAMI
MonAMI was a project funded by the by the EU 6th framework programme. Its main
objective was to demonstrate that accessible, useful services for elderly persons and
persons with disabilities living at home can be delivered in mainstream systems and
platforms. [24]
The architecture of the main building blocks of the MonAMI system is displayed below:

 Figure 2: Building Blocks of the MonAMI architecture [24]

The building blocks are:

• A (off site) web service platform hosting telecommunication services, including
SMS, E-Mail and other care technology.

• Graphical User Interfaces, which are presented to the user over a Universal Control
Hub (UCH) server.

• Sensor devices for context information gathering and,

• Actuator devices for home environment manipulation.

• A SVN version control, used for integration and deployment of the system.

• The Residential Gateway (RG) hosting the MonAMI services.

Residential Gateway (RG)
The RG is considered the centre of the MonAMI system. Technically it is a Java Virtual
Machine, hosting an OSGi framework. Services are implemented as OSGi bundles,
running in the framework.
The RG architecture can be divided into four main parts:

 AALuis 14

D2.1 Report on Middleware Analysis

• Framework: The framework consists of the bundles of the OSGi framework itself,
providing base-line utilities, and the OSGI4AMI bundle. This bundle contains a
common set of Java interfaces, which describe an ontology that is used as a
conceptual basis for internal service communication.

• COM: Hosting bundles to communicate with external entities. These include
sensors and actuators accessed over Zigbee or 1-Wire connections,
telecommunication and telemanagement, and the UCH accessed over IP
connections.

• Technical Services: Low level services of the MonAMI system, for example: alarm
sender, configuration, and utility services used by higher level services.

• Functional Services: Higher level services of the MonAMI system. These include
AMiVUE for detecting context information like device status and movement;
AMiSURE for safety and security functions, abnormal situation detection,
notifications and alarms; AMiCASA for home automation functionality like light
switching.

COM
E.g. Zigbee, 1-Wire connection,

Telco wrapper and UCH connection

Functional Services

E.g. AMiVUE, AMiSURE, Automatic Lights etc.

Technical
Services

E.g. Alarm Sender, Configuration and
Utility services

Framework

E.g. OSGI4AMI,

OSGi base
services

Figure 3: The MonAMI platform

User Interaction
MonAMI recognises three different user groups: beneficiaries with various disabilities,
carers, and developers. Each of them has a distinct user interface. The catering of these is
provided via the Universal Control Hub (UCH) middleware, acting as a gateway between
the user interfaces (UI) and the Residential Gateway (RG):
Main components of the user interface architecture:

• Beneficiary UI: A web based client called “QiWebclient” UI.

• Carer UI: Carer part of the UI, a web client accessed by an iPhone

• Developer UI: Auto-generated user interfaces, directly from the UCH.

 AALuis 15

D2.1 Report on Middleware Analysis

• UCH: Universal Control Hub, a reference implementation of the Universal Remote
Console (URC) standard, also described in this document.

• RG: The residential gateway hosting the core MonAMI services, described above

Figure 4: User Interfaces in the MonAMI project [25]

3.2.1 MonAMI Layer model
Layer model of the residential gateway:

Layer Description AALuis use

COM Layer Communication Layer.

Sensor and Actuator access over Zigbee A,
Zigbee B, 1-Wire technology.

Holds also the component for
communication with the UCH server, and
accessing telecommunication services.

Technical Service
Layer

Containing low level services of the
MonAMI system.

Functional
Service Layer

Containing higher level services of the
MonAMI system

Framework OSGi platform and services utilised in other
Layers.

Contains also the OSGi4AMI bundle,
defining the MonAMI java interfaces for
inter-component communication.

Table 3: MonAMI Layer model

 AALuis 16

D2.1 Report on Middleware Analysis

 AALuis 17

Status:
The project MonAMI is a project funded by the by the EU 6th framework programme, with
a consortium constituted of the following partners:

• Swedish Institute of Assistive Technology (Competence Centre)

• Electricité de France (Electricity Utility)

• Europ Assistance France (Service Provider)

• France Telecom (Telecom)

• HMC International (Assistive Devices)

• London School of Economics (Research)

• OpenHub (Services)

• Royal Institute of Technology (Research)

• Siemens IT Solutions and Services (Consumer Devices)

• Technical University of Košice (Research, Training)

• Telefónica I+D (Telecom)

• Trialog (Software, SME)

• University of Passau (Research)

• University of Zaragoza (UZAZ) Research
The project started on September 1st 2006, and closed on May 31st 2011. After the
project closure, the results remained hosted by, the coordinator, but no further endeavours
are planned or to be expected. [26]
No commercial exploitation of the project was announced on available sources.
Openness:
All source code and documentation was released under an open source license. The
release contains thorough documentation on the setup process, as well as source code
documentation. This created no traction in the open source community, with no further
active development visible.
Richness / Functionality:
The project created some, but not all planned, AAL services. In the domain of user
interaction, a communication adapter to the UCH was created. This can be a valuable
input and starting point for the AALuis project, if the usage of the URC technology is
planned.
The UCH communication component could be a valuable input for AALuis. Other
components and services appear to be project centric, and not universally applicable
Communication:
The UCH communication component connects the MonAMI platform the UCH world. In the
project this was done to cover all user interaction needs. User Interfaces therefore are
connected to the system over the URC-HTTP protocol to the rest of the MonAMI system.
In the OSGi based runtime, service-discovery and service-connection are done via
mechanisms the OSGi framework provides. The only component of the MonAMI that

D2.1 Report on Middleware Analysis

 AALuis 18

connects via IP to external services is responsible to connect to telecommunication
services. For non disclosed reasons this component was not part of the released source
code, and cannot be analysed for further use.
Inter-component message exchange is realised through OSGi facilities. The basis of this,
internal communication builds an ontology manifested in Java interfaces. Context
information is held and processed in the service bundles.
User interaction of the service bundles is achieved through abstracted UIs that are
provided through the UCH to the user interfaces.

3.3 Universal Remote Console, Universal Control Hub
The Universal Remote Console (URC) is an international standard (ISO/IEC 24752)
defining a way to control arbitrary electronic devices or services (hardware or software)
with interoperable, pluggable user interfaces that adapt or are adaptable to fit the user’s
special needs.
The standard distinguishes so-called “controllers” hosting the user interfaces, which
control services and devices called “targets” in its context. In the URC system controllers
and targets can interact without prior knowledge of each other. As a common knowledge
the standard specifies XML formats to describe the entities of the URC ecosystem, which
utilise the ISO 15836:2003 standardised Dublin Core metadata element set.
Each target exposes its functionality and state through one or more “User Interface
Sockets” (UIS), specified in a special XML format and defined in the sub standard ISO/IEC
24752-2 [22]. These User Interface Socket descriptions formalise the capabilities of a
target in a machine-interpretable abstract way, independent of any specific implementation
platform. Additional information (e.g. Interaction mechanisms, resources for labelling, static
components) is necessary to form a concrete user interface in the controller. This
information is made available through additional XML, so called “User Interface
Implementation Description” (UIID), as defined in the standard. An example for an UUID
would be the “Presentation Template” (PT) [23]. It maps elements of a user interface
socket to interaction modality independent intents. As a central point, for all of the
information a target is advertising, a “Target Description” (TD) document is to be published
by every target.

D2.1 Report on Middleware Analysis

Figure 5: Layers of the URC architecture

The Universal Control Hub (UCH) is a profiling of the URC standard, to overcome the
shortcomings of the URC in the area of mass adaption1. It realizes the URC standard as a
middleware server component, providing connection points to existing, non URC
compatible targets and controllers. UCH leverages prevalent network enabled devices and
technologies, by using custom made proprietary components for discovery and control of
targets.

1 The URC standard needs in practice targets and devices that fully implement the URC information and
communication model. As of now there is no significant adoption of the standard by manufacturers.

 AALuis 19

D2.1 Report on Middleware Analysis

Figure 6: Logical view of the UCH architecture [19]

As proposed in [20], targets are exposed to the UCH framework through the UPnP
mechanism. These are UPnP enabled devices of diverse provenance, communicating
with UPnP enabled components of the UCH. Concrete user interfaces are catered by the
UCH to clients. They use socket descriptions, which hold abstract interaction information,
together with a Pluggable UI. The Pluggable UI contains concrete layout and rendering
information, and can be served from a remote resource server.

Figure 7: UCH architecture [20]

 AALuis 20

D2.1 Report on Middleware Analysis

 AALuis 21

3.3.1 URC Layer model
Layer Description AALuis use

Target Layer Services and devices to be controlled.

Responsible to advertise its socket
descriptions and resource sheets to the
URC system through various XML files.

Target Adapter
Layer

UCH discovers a target through a target
discovery manager, and controls it and
receives events from it through a target
adapter.

UI Socket Layer Holds abstract (User Socket description)
and concrete (Pluggable UI) information
about the user interface. To be rendered by
controller user interfaces.

UI Protocol Layer Communication layer over which a
controller is connected to the URC. E.g.
URC/HTTP.

UCH also describes other access methods
like SVG/HTTP or DHTML/HTTP

Controller Layer User interface clients that present the
concrete interfaces of known targets to the
user, by any modalities it is capable of.

Table 4: URC Layer model

Status:
The URC specification was approved as an international standard in 2008.
Implementations of the standard are currently underway by the URC consortium.
There are currently three concrete implementations of the UCH, two of them open source:
UCHj (Java implementation), UCHe (C/C++ implementation for embedded systems), and
one proprietary.
While there is an initiative called openURC, which tries to propagate the URC standard,
the open source projects UCHj and UCHe are not under active development since May 21,
2010.
Openness:
The URC standard documents the architecture and technical background thoroughly.
UCHj and UCHe installation and configuration instructions can be found on the project
home page.
Richness / Functionality:
No means to integrate user profiles or preferences into the user interface adaption or
election.
Communication:
The service (target) and user interface (controller) discovery process is defined through
the URC standard. User Interfaces that fully follow the URC standard are connectable by
definition.

D2.1 Report on Middleware Analysis

The UCH can be connected to any UPnP enabled device. Also network enabled devices
could be connected via proprietary connectors.
Services can be understood as “targets”, if they expose their user interaction through the
standards XML descriptions they can be used. As in the MonAMI project, services that do
not follow the standard per se need to be connected through “translation layers”.
The UCH communicates with controllers through “User Interface Protocol Modules”.
Controllers aware of the URC standard, can directly access the user interface sockets,
running in the UCH, through URC/HTTP – an HTTP-based messaging protocol. Other
access technologies and protocols are possible (e.g. access to sockets through
SVG/HTTP).

3.4 UniversAAL
UniversAAL is an ICT project funded under the 7th Framework Programme. It aims to
produce an open platform that makes it technically feasible and economically viable to
conceive, design and deploy innovative new AAL services for developers. End-Users will
be addressed with a simple to use solution to download and setup these AAL services.
The developed platform is a mixture of new development and consolidation of existing
platforms of the projects: AMIGO, GENESYS, MPOWER, OASIS, PERSONA, and
SOPRANO.

Figure 8: Platform from [27]

Based on the technical requirements, as described in [1], a reference architecture was
created, and described in [2].

 AALuis 22

D2.1 Report on Middleware Analysis

3.4.1 UniversAAL Layer model
The universAAL reference architecture structures the platform in a loosely layered way.
There are distinct layers, but not in a strict way as, for example, the OSI layer model does.
Instead each layer holds functional groupings of components, which are distributed over
several networked nodes in the universAAL ecosystem. While every (middleware) service
is transparently accessible on every node, not every middleware service or component is
present on every node. Only the so called “Middleware” layer has an equivalent on every
node enabling inter node communication.

Figure 9: The UniversAAL architecture as described in [2]

Layer Description AALuis use

Middleware Layer Has footprints across all nodes in a given running
universAAL ecosystem. Understood as an extension to
the native runtime environment of the node – also
named the “Container”.

Discovery and peering. To hide the distribution of nodes
they first have to be discovered. This is also covered by
the middleware layer, in a protocol-flexible way.

All communication has to be run over the middleware
layer, to realise a great freedom in distribution of

 AALuis 23

D2.1 Report on Middleware Analysis

 AALuis 24

services.

The “Basic Information Model”, necessary to create
correct and meaningful communication.

Generic Platform
Services Layer

Hardware Abstraction, binds network enabled nodes
that are not AAL system “aware” by them self. For
example proprietary sensory systems of the home
environment.

Context Management, provide adequate communication
between providers and consumers of context data.

Service Management, to facilitate service-based
interoperability. I.e. registration of services, brokering of
inter service requests.

Profiling, for managing shared data representing user
preferences and characteristics.

User Interaction Framework addresses challenges
related to explicit interaction between AAL spaces and
its human users. Hides the complexity of I/O
infrastructure from the upper application layers.

Automatic Situational Assistance, automatic reaction of
the AAL system to certain situations.

AAL Space Gateway, contains basic means to open the
AAL space to the outside world. E.g. the internet

AAL Platform
Plug-in Layer

Common Up-lifters & Providers, placeholder for
provision of specific context data considered of common
use.

Common Services, placeholder for concrete service
components which provide commonly needed services.
Management of services is done in the Generic
Platform Services Layer

Common UIs, I/O channel managers reside in this
building block.

Common Rules, for the lower level generic platform
service layer block of Automatic Situational Assistance.

Common Model Extensions, pluggable components
holding extra model entities.

AAL services &
applications layer

AAL services and applications that build on top of the
universAAL middleware. (Created by 3rd parties)

Table 5: universAAL Layer model

D2.1 Report on Middleware Analysis

 AALuis 25

Status:
The universAAL project is in active development. The universAAL platform software is
currently open to the public, in a first version. Preliminary and final documents of the
project are available as well, that describe the system elaborately.
Openness:
As stated in the project’s description one of the aims of universAAL is to create an open
AAL platform. It is planned to release it under a loose open source license.
Richness / Functionality:
Due to the on-going development no conclusion about the final implemented functionality
and richness of services can be made. Due to the fact, that universAAL consolidates a
group of AAL projects, a large number of components and services could be considered
as candidates for future use: The planned architecture promises to have various facilities
for the AALuis middle ware layer,e.g. hardware access, transparency of communication,
and other generic platform services to be used.
Depending on the traction that the universAAL “uStore” will create, additional services can
be expected in the future.
Since the software platform is not yet published, no conclusion about the concrete
components can be made.
Communication:
Transparent communication between distributed services, running on network enabled
nodes that have the universAAL middleware imprinted, is allowed through the middleware
layer. Network enabled devices and services, that are not universAAL-aware, can be
bound by the hardware abstraction service.
The architecture foresees an AAL space gateway that is used to open the local
universAAL ecosystem to the outside world. This can be external services or other AAL
middleware.
Facilities for user interfaces are part of the reference architecture. They are reflected in
generic platform services as well as communication busses for input and output of the
system. This means user interfaces need to run on nodes that are universAAL enabled.
The universAAL middleware employs a bus system for location-transparent message
exchange of universAAL-enabled entities.
External entities can communicate through a hardware abstraction layer with the system.

3.5 Philips NetTV
The Philips NetTV platform consists of embedded functionalities on NetTV-enabled
television sets and the infrastructure behind it. The platform allows for on-demand services
which are accessible through Philips Service Portal. The actual services are deployed on
servers outside the platform; the Service Portal acts as a gateway that connects the TV
user with the according service, after which a direct IP connection is established.
A schematic of NetTV infrastructure can be found in Figure 10:

D2.1 Report on Middleware Analysis

Figure 10: Philips NetTV architecture, basic overview. Services are hosted on external, 3rd party
servers. The TV users connect directly to the Philips Services Portal. After selecting a service, a
direct link is created with the service provider. The whole experience is integrated with the
remaining TV functions (EPG).

In addition, Philips is currently working on establishing protocols for interacting with TV
directly with various external devices, such as tablet computers, smartphones etc. This is
based on UPnP and JointSPACE and allows for exchange and manipulation of data
between devices. The goal is to make a more ubiquitous experience for the user where,
for example, it would be possible to view pictures from the phone on the TV or select
channels directly from a tablet computer.

3.5.1 Philips NetTV Layer model
Layer Description AALuis use

Television
Channels / EPG

These are provided either digitally or
analogously by the cable company. The
EPG information allows for channel
switching via a visual interface and viewing
broadcasting schedule (if this is included in
the broadcast by the provider)

Service Portal The TV interface connects directly to the
Service Portal, which stores the users’
information. No information is stored locally
on the TV, except some basic settings. The
Service Portal allows for subscription to
services (via embedded App Gallery
service), customizing the shortcut list and
providing feedback on 3rd party services.
The Service Portal also connects to
advertisers, which allows for localized /
targeted ad integration in the interface and
EPG.

 AALuis 26

D2.1 Report on Middleware Analysis

 AALuis 27

Services The services are hosted by their providers,
on a server of their choice. Because any
service in essence is a website, choices of
hosting and implementation vary highly.
The services are registered at Service
Portal and must comply with ceHTML
standards.

JointSPACE This is an open source project with the goal
of enabling devices to interact with the TV
EPG. In this way channel, and other,
information between the TV and other
devices can be shared and synchronized.

Table 6: Philips NetTV Layer model

3.6 Verklizan UMO Platform
The UMO telecare platform (also called monitoring centre platform, call centre platform or
alarm centre platform) is the open telecare platform designed and manufactured by
Verklizan BV. The UMO is an open platform to which an enormous range of care and
security equipment can be connected. This varies from the traditional personal alarm
devices to advanced set-up boxes for video and telehealth applications.
Verklizan delivers the UMO platform as a product to AAL service providers (such as the
AALuis partner Hilfswerk) which use the platform to offer AAL services to end-users. So
Verklizan is a platform provider and the clients of Verklizan are the service providers which
deliver their services based on the platform.
In general the service providers operate as a hub between:

• (Elderly) persons in need of AAL services

• Caregiver organizations and personal carers

• Care homes & nursing homes

• Organizations installing and servicing AAL equipment

• Financing bodies

To support the service providers in their daily business, the UMO platform delivers a wide
range of services for several types of users.

http://www.verklizan.org/exec/verklizanweb.exe?lang=UK&page=Pagina/UMO45.html
http://www.verklizan.org/exec/verklizanweb.exe?lang=UK&page=Pagina/UMO45.html

D2.1 Report on Middleware Analysis

3.6.1 Verklizan UMO Platform Layer model

The UMO telecare platform can be divided into three architecture layers which are the
interface layer, the business layer and the application layer. The interface layer provides
the connection with the public communication networks, namely the telephone, mobile and
internet. This layer provides protocol conversions to be able to communicate with a wide
range of third party equipment. The interface layer delivers all incoming information in an
uniform format to the server layer and vice versa.
The business layer provides the central processing of all incoming information delivered by
the interface layer, the control of outgoing information towards the interface layer and the
storage of information. In this layer information is combined and translated to business
events such as social alarms and incoming calls. These business events are routed to the
appropriate handler for each event. This could be an automatic handler (i.e. for automatic
processing and logging) or an alarm handling application in the application layer (i.e. for
manual handling by the service provider support staff).
The application layer contains the end user applications of the UMO telecare platform that
enables the service provider support staff with a wide range of tasks. In the scope of AAL
end-user services, the service provider support staff is supported by a call centre
application which enables the handling of calls, social alarms, mobile alarms,
telemonitoring, outbound contacts, screen to screen contact and video monitoring.
Other end user applications support the service provider with back office related tasks
such as scheduling, financial reporting, relation management, equipment management,
call centre management etc.
The platform contains no end user applications which deliver AAL services to the end-
user. Those AAL end-user services are always provided to the end user by means of 3rd

party telecare and security equipment.
The business model is B2B, the platform is supplied to AAL service providers. No telecare
equipment is supplied with the platform. Instead, there is a close cooperation with all the
manufacturers of telecare equipment, to ensure maximum compatibility with UMO and to
provide complete freedom of choice to our customers. The UMO platform is open and

 AALuis 28

D2.1 Report on Middleware Analysis

 AALuis 29

universal: all possible telecare services could be included. The UMO business model
stimulates innovation: new services can be showcased at low initial costs and prove
themselves in practice
In order to provide a high reliable and available solution, all system layers are
implemented with high quality components. Also the vital system components are
implemented redundantly, so there is no single point of failure.

Layer Description AALuis use

Application Layer The application layer delivers the UMO
functionalities to the staff of the monitoring
centre (i.e. the service provider) by means
of a front office and a back office end user
application.

-

Business Layer

The business layer provides central uniform
processing, storage, control and routing of
incoming and outgoing information in the
UMO system.

-

Interface Layer The interface layer translates information
between the public telecommunication
networks/communication protocols and the
UMO platform internal communication
message format for a uniform handling of
information, regardless of
telecommunication network or protocol
implementation.

End user AAL services of the UMO platform
(as described in more detail in D4.1) can be
exposed to third party platforms by means
of available protocol and network interface
implementations. Especially open IP based
communication standards such as SOAP
based web services and SIP (streaming
audio and video) are suitable to integrate
the UMO platform with other platforms such
as AALuis.

Table 7: Verklizan UMO Layer model

3.7 How is the middleware interacting with other parts
The middleware interacts with many different parts, such as services, user interfaces,
devices, etc. The purpose of the middleware is to glue these components together make
them interoperable. Table 8 provides an overview with which parts the AAL middlewares
interact and describes how this is realized.

AAL Middleware Interaction with other parts Description

AMIGO Platforms, Devices, Consumer Services,
User Interfaces

MonAMI Services, Devices, User Interfaces

openURC Services, Devices, User Interfaces

universAAL Platforms, Devices, AAL Services,

Phllips NetTV Consumer Services

Verklizan UMO AAL Services

Table 8: Interaction with other parts

D2.1 Report on Middleware Analysis

 AALuis 30

3.8 Interoperability & Standardization, Extendibility, Accessibility &
Usability

AAL Middleware In
te

ro
pe

ra
bi

lit
y

St
an

da
rd

iza
tio

n

Ex
te

nd
ib

ilit
y

Ac
ce

ss
ib

ilit
y

Us
ab

ilit
y

Description

AMIGO ++ + + Interoperability is between different technologies is realized by
the service discovery and interaction middleware. Platform
provide OSGi and .NET deployment frameworks

MonAMI ~ - + The implementation of interoperability in MonAMI is realised
through the use of URC/UCH connectors and as far as visible
restricted to this. The OSGi services used are thoroughly
described and open, thus could be used to extend the platform.

There is no information on accessibility and usability test results
available.

URC / UCH ~ ++ + The URC is a standard in itself; by the addition of the UCH
developments UPnP based devices can be interoperated.

The URC foresees distinct points of extendibility in the
architecture.

Concerns of accessibility and usability are not part of the URC /
UCH in itself, but have to be covered by the implementers of
the system.

universAAL ++ ++ ++ UniversAAL shows promise to support a wide variety of
hardware components. The open developments promote
themselves for interoperability and extendibility.

The universAAL platform is described to develop “into one
consolidated, validated and standardised European open AAL
platform”.

The universAAL project explicitly mentions developer tools and
a developer depot, to enable and facilitate the extension of the
platform and services. Guidelines help in that regard.

The uStore concept is promoted as a way to deploy and
monetise services.

Phllips NetTV ~ + ++ NetTV services run in the backend and are accessed via the
NetTV service portal. The TV set mainly acts as user interface.

Verklizan UMO ++ ++ + ~ ~ IP interoperability based on implementations of the SOAP and
SIP standards.

Improvement of the UMO platform is a continuous process
within Verklizan and therefore it is possible to extend the
system if this fits the needs of Verklizan.

Table 9: Interoperability, Standardization, Extendibility, Accessibility, Usability

D2.1 Report on Middleware Analysis

4 Area 4: Personalization and User (Interaction) Profiling
4.1 In which aspects is user profiling important on your level?
4.2 Cross Platform User Profiles WP2/3
4.2.1 ETSI – User Profile Management
The ETSI Specialist Task Force 342 on Personalization and User Profile Management
Standardization has released various guides, technical specifications and standards
dealing with user profile management [3] [4] [5]. They deal with the concept of user profiles
representing information, preferences and rules used by devices or services for
customization. The idea is to use the same user profile for the personalization of different
services and devices as depicted in Figure 11 based on the UPM system model displayed
in Figure 12. Details can be found the beforehand mentioned documents.

Figure 11: Class interaction model for UP/UPM based on use case model [4].

Context-DetectorUser-Profile

Device

Service

UP-User

Class of objects that support
 the
"ProcessContextInformation"
 use case

User information,
preferences, rules
and methods

Expresses preferences in Invokes rules and methods in

Uses

Uses

Customizes provision of

Is hosted by

 AALuis 31

D2.1 Report on Middleware Analysis

Figure 12: UPM system model [5]

 AALuis 32

+updateCreatedDataItems()

Live-Template
Creation-Template

4.2.2 MASP (Multi-Access Service Platform)
Blumendorf et al. present their Multi-Access Service Platform which is a runtime created
for rapid prototyping, development and deployment of model-based multimodal
applications [6]. Their approach is based on the following five characteristics of user
interfaces: adaptivity, session management, migration, distribution and multimodality.
The concepts of adaptivity represented by a layout engine for the specification of layout
constraints for rendering the user interface and migration of user interfaces between
devices by means of switching between interaction channels are of interest. The
information about layout is derived from different user interface models, like the
Concurrent Task Tree (CTT) [7] or the interaction description. The combination of
migration and adaptivity allows switching between devices with different capabilities like a
mobile phone or a desktop PC [6].

4.2.3 UserML and GUMO (General User Model Ontology)
Heckmann et al. describe the user model exchange language UserML, which is based on
RDF, to enable decentralized systems to communicate over user models [8]. The idea of
the approach is the use of UserML [10], which can be used for modeling user model

-scope-id
-text-label
-comment
-template-ref
-scope-category
-priority
-scope-active : Boolean
-user-activation-status
-context-status : Boolean
-activation-notification
-label-representation

+scopeFromTemplate()
+contextEvaluation() : Boolean
+isActive() : Boolean

Scope

-template-id
-text label
-comment
-template-type
-template-category
-priority
-label-representation

Template

-data-item-id
-text-label
-conflict-notification

+conflictResolution()

Profile-Data-Item
-scope
-data-item-value
-profile-data-rating
-inferred-updating
-update-source-category
-update-source-identity

+attributesFromTemplate()

Profile-Item-Attributes

Tempate-Label

-profile-id
-text-label
-comment
-label-representation

+runRules()
+mapToServiceData()

User-Profile

-scope-label : Label
Scope-Label

-component-id
Profile-Component

-picture-label
Picture-Label

-template-label : Label
identified by

0..*

Root-Profile

-colour-label
Colour-Label

-sound-label
Sound-Label

-profile-label : Label
Profile-Label

Label

located_in
1..*

0..*

InformationPreference Rule

1..*

1..*

identified by
0..*

identified_by
0..*

D2.1 Report on Middleware Analysis

statements in a uniform way. Due to the uniform syntactical relational data structure the
statements can on the one hand be represented by ontologies and on the other hand it is
possible to store mass data in a database. The statements are either locally or globally
stored in repositories, which can as well be shared between devices (see Figure 13).
GUMO, General User Model Ontology [10], is used the basic dimensions of the user
models are split into three chunks, namely auxiliaries, predicates and ranges.

Figure 13: Concept of centralized, distributed and isolated mobile user modelling [8].

4.2.4 User Preferences and Device Capabilities Profiles
Kuhnen et al. state that the success of future Next Generation Network (NGN) services
depends on the ability to adapt and personalize service delivery according to the user’s
context as well as service and device capabilities [11]. The approach is to use two profiles:
the user preferences profile and the device capabilities profiles, whereas both are based
on existing standards. The user preference profile is based on the Converged IP
Messaging (CPM) user preference profile concept, whereas each profile covers various
personal settings, and is stored in the XML Document Management (XDM) format by the
Open Mobile Alliance. Furthermore the device capabilities profile is used to store an
overview of available devices and their capabilities. For the representation of the profile
the Composite Capabilities / Preferences Profile (CC/PP) based User Agent Profile
(UAProf) standard is used, whereas each device has its own profile. It is again based on
RDF and the specification can be extended to cover all needed capabilities. The CC/PP
was originally developed by the Device Independence Working Group of the Word Wide
Web Consortium (W3C) [12].

4.2.5 Rule-based Adaptation Strategy
Yang et al. describe a rule-based adaptation strategy as an efficient way to transform Web
contents into adapted ones that conform to the requesters’ contexts [13]. The strategy is
as well applicable to other content since it is a general concept for the transformation of
content. Content adaptation is about transforming content based on preferences from the
user, the environment and the provider. The approach adopts rule-based adaptation on
context features, thus to increase the granularity of information compared to traditional
methods, which are commonly based on specific environmental information and a
composition of objects. The decomposition allows exact meeting of delivery context
requirements posed by a heterogeneous environment. It also makes the addition of new
rules possible in an easy way. This necessity, to react on context feature changes, stems
from the complexity of predefining rules to meet the user’s contexts [13]. The description of
the context is divided into three layers representing object structure, modality and fidelity.
The model is based on the CC/PP and UAProf for describing the device and

 AALuis 33

D2.1 Report on Middleware Analysis

complemented by accessibility and situation to describe the user. Rules can be formulated
as e.g. .

4.3 Accessibility Profiles WP2
4.3.1 The Common Accessibility Profile (CAP)
Carter et al. present the idea of a Common Accessibility Profile which can be used as the
basis for selecting and supporting computer-related Assistive Technologies (ATs) and
focuses on the improvement of accessibility to the interactions between users and systems
in a standardized manner across multiple platforms [14] [15]. The approach is
standardized in the ISO/IEC 24756 standard.
The idea of CAP is to create a computable representation of accessibility profiles for users,
systems and the environment. The cap can be derived from predefined profiles, and
represents user’s abilities and needs. When a user provides a CAP, the system
establishes an accordingly accessible interaction. For providing the user’s CAP to the
system various media, such as USB flash drives or other flash/smart cards, or RFID tags
can be used.

4.3.2 SEMA4A – Simple Emergency Alerts 4 [for] All
Malizia et al. have originally introduced as an ontology for emergency notification systems
accessibility [16]. The idea is to create a common language for emergency systems but as
well incorporating concepts from accessibility guidelines and interactive devices. The focus
has been on creating an ontology for notifications by adhering to accessibility and usability
concepts. SEMA4A is based on OWL and can be divided in three sub-ontologies [16],
namely EMEDIA representing concepts related to emergency and media concepts, Wafa
dealing with modelling the organization, structure and navigation of information contents,
and finally AccessOnto including accessibility guidelines, user profiles and actions for
users with individual abilities.

4.3.3 AccessOnto - Ontology for Accessibility Requirements Specification
AccessOnto is an ontology-based toolkit for accessibility requirements specification
primarily designed to provide a repository of accessibility guidelines and a specification
language intended to help SW developers to incorporate accessibility requirements in their
user requirement document [17]. The main aim of AccessOne is to create a means for
incorporating accessibility guidelines and related activities into the process of requirements
engineering. The basic structure can be described as in Figure 14, whereas the main
concepts are the user and task characteristics and the guidelines.

Figure 14: AccessOnto framework [17].
4.3.4 UI Adaptation System
Brunix et al. have presented an approach to combine the UIDLs, device model and user
model in a UI adaptation system to ensure accessibility of data and services for individual
access [18]. The information model is divided into a presentation model describing the
user interface itself and the content to be presented, the user model describing the user of
 AALuis 34

D2.1 Report on Middleware Analysis

the service and finally the device model describing the device where the service runs. In
Figure 15 the structure of the information model is depicted. The information model is
described by means of the Web Ontology Language (OWL). For the presentation model
User Interface Description Language (UIDL), for the user model a combination of GUMO
and MPEG-21 and for the device model MPEG-21 (instead of UAProf) have been used.

Figure 15: Structure of the information model [18].

 AALuis 35

D2.1 Report on Middleware Analysis

 AALuis 36

References
[1] P. Wolf, D1.2-B AAL Reference Architecture Requirements, 2010
[2] S. Tezari, I. Gema, D1.3-B The universAAL Reference Architecture, 2010
[3] ETSI Technical Committee Human Factors, "Human Factors (HF); Personalization

and User Profile Management; Architectural Framework," ETSI Technical
Specification ETSI ES 202 746 V1.1.1 (2010-02), 2009.

[4] ETSI Technical Committee Human Factors, "Human Factors (HF); Personalization
and User Profile Management; User Profile Preferences and Information," ETSI ETSI
Standard ETSI ES 202 746 V1.1.1 (2010-02), 2010.

[5] ETSI Technical Committee Human Factors, "Human Factors (HF); User Profile
Management," ETSI ETSI Guide ETSI EG 202 325 V1.1.1 (2005-10), 2005.

[6] B. Marco, S. Feuerstack, and S. Albayrak, "Multimodal Smart Home User Interfaces,"
in International Workshop on Intelligent User Interfaces for Ambient Assisted Living
(IUI4AAL), Spain, 2008.

[7] F. Paterno, Model-Based Design and Evaluation of Interactive Applications. London:
Springer, 1999.

[8] D. Heckmann, T. Schwartz, B. Brandherm, and A. Kröner, "Decentralized User
Modeling with UserML and GUMO," in Proceedings of the Workshop on
Decentralized, Agent Based and Social Approaches to User Modelling (DASUM
2005), 2005, pp. 61-65.

[9] D. Heckmann, "Introducing Situational Statements as an integrating Data Structure
for User Modeling, Context-Awareness and Resource-Adaptive Computing," 2003.

[10] D. Heckmann, T. Schwartz, B. Brandherm, and M. von Wilamowitz-Moellendorff,
"GUMO - the General User Model Ontology," in Proceedings of the 10th International
Conference on User Modeling. International Conference on User Modeling (UM), July
24-29, Edinburgh, Scotland, United Kingdom, Edinburgh, 2005, pp. 428-432.

[11] M. Q. Kuhnen, et al., "Personalization-Based Optimization of Real-time Service
Delivery in a Multi-Device Environment," in Wireless Communications and
Networking Conference, 2009. WCNC 2009. IEEE, Budapest, 2009, pp. 1-6.

[12] W3C. (2011, Oct.) CC/PP Information Page. [Online].
http://www.w3.org/Mobile/CCPP/

[13] S. J. H. Yang and N. W. Y. Shao, "Enhancing pervasive Web accessibility with rule-
based adaptation strategy," Expert Systems with Applications, vol. 32, no. 4, pp.
1154-1167, May 2007.

[14] J. Carter and D. Fourney, "The Common Accessibility Profile," The University of
Saskatchewan - Department of Computer Science, Saskatoon, Canada, Technical
Report, 2004.

[15] D. Fourney and J. Carter, "A Standard Method of Profiling the Accessibility Needs of
Computer Users with Vision and Hearing Impairments," in Conference & Workshop
on Assistive Technologies for People with Vision & Hearing Impairments, technology
for Inclusion, CVHI 2006, 2006, pp. 138-142.

[16] A. Malizia, T. Onorati, P. Diaz, I. Aedo, and F. Astorga-Paliza, "SEMA4A: An
ontology for emergency notification systems accessibility," Expert Systems with
Applications, vol. 37, pp. 3380-3391, 2010.

http://www.w3.org/Mobile/CCPP/

D2.1 Report on Middleware Analysis

 AALuis 37

[17] K. R. Masuwa-Morgan, "Introducing AccessOnto: Ontology for Accessibility
Requirements Specification," in First International Workshop on Ontologies in
Interactive Systems, 2008, pp. 33-38.

[18] C. Bruninx, C. Raymaekers, K. Luyten, and K. Coninx, "Runtime Personalization of
Multi-Device User Interfaces: Enhanced Accessibility for Media Consumption in
Heterogeneous Environments by User Interface Adaptation," in Second International
Workshop on Semantic Media Adaptation and Personalization, 2007, pp. 62-67.

[19] G. Zimmermann, URC Technical Primer 1.0 (DRAFT), http://myurc.org/TR/urc-tech-
primer1.0/ (14.10.2011)

[20] G. Zimmermann, G. Vanderheiden, R. Charles, Universal Control Hub & Task-Based
User Interfaces http://myurc.org/publications/2006-Univ-Ctrl-Hub.php (14.10.2011)

[21] E. Gómez-Martínez, J. Mersegeur (2010), „Performance Modeling and Analysis of
the Universal Control Hub“ in EPEW'10 Proceedings of the 7th European
performance engineering conference on Computer performance engineering,
Springer-Verlag, Berlin, p 160-174, ISBN: 3-642-15783-1 978-3-642-15783-7

[22] ISO/IEC (2008) Information Technology - User Interfaces – Universal remote console
– Part 2: User interface socket description, ISO/IEC 24752-2:2008, Geneva

[23] ISO/IEC (2008) Information Technology - User Interfaces – Universal remote console
– Part 3: Presentation template, ISO/IEC 24752-2:2008, Geneva

[24] Swedish Institute of Assistive Technology, MonAMI Information
http://www.monami.info (14.10.2011)

[25] P. Steiner et al (2011), D23.2 Annex MonAMI Architecture description
[26] MonAMI Project Consortium (2011), MonAMI Core Services, User Manual
[27] universAAL Project Consortium (2011), universAAL.org,

http://universaal.org/index.php?option=com_content&view=article&id=7&Itemid=6
[28] S. Tazari, O. Höftberger, Z. Owda, D2.2-A universAAL Generic Platform Services,

AAL platform services and ontology artefacts
[29] AMIGO project website, http://www.hitech-

projects.com/euprojects/amigo/software.htm (22.11.2011)

http://myurc.org/TR/urc-tech-primer1.0/
http://myurc.org/TR/urc-tech-primer1.0/
http://myurc.org/publications/2006-Univ-Ctrl-Hub.php
http://www.monami.info/
http://www.hitech-projects.com/euprojects/amigo/software.htm
http://www.hitech-projects.com/euprojects/amigo/software.htm

	Release History
	AALuis Consortium
	Table of Contents
	Table of Figures
	List of Tables
	Abbreviations
	Executive Summary
	1 About this Document
	1.1 Role of the document
	1.2 Relationship to other AALuis deliverables

	2 Criteria for the Middleware Analysis
	3 Analysis of available AAL Middlewares
	3.1 AMIGO
	3.1.1 AMIGO Layer model

	3.2 MonAMI
	3.2.1 MonAMI Layer model

	3.3 Universal Remote Console, Universal Control Hub
	3.3.1 URC Layer model

	3.4 UniversAAL
	3.4.1 UniversAAL Layer model

	3.5 Philips NetTV
	3.5.1 Philips NetTV Layer model

	3.6 Verklizan UMO Platform
	3.6.1 Verklizan UMO Platform Layer model

	3.7 How is the middleware interacting with other parts
	3.8 Interoperability & Standardization, Extendibility, Accessibility & Usability

	4 Area 4: Personalization and User (Interaction) Profiling
	4.1 In which aspects is user profiling important on your level?
	4.2 Cross Platform User Profiles WP2/3
	4.2.1 ETSI – User Profile Management
	4.2.2 MASP (Multi-Access Service Platform)
	4.2.3 UserML and GUMO (General User Model Ontology)
	4.2.4 User Preferences and Device Capabilities Profiles
	4.2.5 Rule-based Adaptation Strategy

	4.3 Accessibility Profiles WP2
	4.3.1 The Common Accessibility Profile (CAP)
	4.3.2 SEMA4A – Simple Emergency Alerts 4 [for] All
	4.3.3 AccessOnto - Ontology for Accessibility Requirements Specification
	4.3.4 UI Adaptation System

	References

