

AAL Joint Programme

Ambient Assisted Living user interfaces

AAL-2010-3-070

 AALuis i

Project Identification

Project number AAL-2010-3-070

Duration June 2011 – May 2014

Coordinator Christopher Mayer

Coordinator Organisation AIT Austrian Institute of Technology GmbH, Austria

Website www.aaluis.eu

Ambient Assisted Living
user interfaces

Document Identification

Deliverable ID: D-3.1 Report on user interface analysis

Release number/date V1.0 19.12.2011

Checked and released by Martin Morandell/AIT

Key Information from "Description of Work"

Deliverable Description The report presents the results of the User Interface Analysis from two
perspectives: the end users perspective and the technical background.

Dissemination Level PU=Public

Deliverable Type R = Report

Original due date Project Month 4 / 31 October 2011

Authorship& Reviewer Information

Editor Jan Bobeth / CURE

Partners contributing Martin Morandell and Matthias Gira / AIT, Sascha Fagel / Zoobe

Reviewed by Miroslav Bojic / PHIL

D3.1 Report on user interface analysis

 AALuis ii

AALuis Consortium
AALuis (AAL-2010-3-070) is a project within the AAL Joint Programme Call 3. The
consortium members are:

Partner 1 AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GmbH
(AIT, Project Coordinator, AT)

Contact person: Christopher Mayer

Email: christopher.mayer@ait.ac.at

Partner 2: weTouch e.U. (weT, AT)

Contact person: Christian Schüler

Email: christian.schueler@wetouch.at

Partner 3: Center for Usability Research & Engineering (CURE, AT)

Contact person: Jan Bobeth

Email: bobeth@cure.at

Partner 4 zoobe message entertainment GmbH (Zoobe, DE)

Contact person: Sascha Fagel

Email: fagel@zoobe.com

Partner 5 Verklizan BV (Verk, NL)

Contact person: Matti Groot

Email: mgroot@verklizan.com

Partner 6 ProSyst Software GmbH (PRO, DE)

Contact person: Kai Hackbarth

Email: k.hackbarth@prosyst.com

Partner 7 50plus GmbH (50plus, AT)

Contact person: Tanja Bosch

Email: tanja.bosch@seniorenbund.com

Partner 8 Hilfswerk Österreich (HWOe, AT)

Contact person: Walter Marschitz

Email: walter.marschitz@hilfswerk.at

Partner 9 Philips Consumer Lifestyle B.V. (PHIL, NL)

Contact person: Kees Tuinenbreijer

Email: kees.tuinenbreijer@philips.com

D3.1 Report on user interface analysis

 AALuis iii

Table of Contents

AALuis Consortium II
Table of Contents III
Table of Figures V

List of Tables V

Abbreviations V

Executive Summary 1
1 About this Document 2

1.1 Role of the deliverable 2
1.2 Relationship to other AALuis deliverables 2

2 Interaction Modalities for Older People 3
2.1 Touch interaction: advantages and risks 3

2.1.1 General (not age-related) insights from research 3
2.1.2 Age-related insights 5
2.1.3 Guidelines 9

2.2 Avatars: an opportunity to involve older people 15
2.2.1 What is an avatar? 15
2.2.2 Perception of Avatars 16
2.2.3 The Uncanny Valley 16

2.3 The chances of Voice-based interaction 17
3 User Interface Description Languages 19

3.1 Analysis criteria for UIDLs in AALuis 19
3.2 Analysis of UIDLs 20

3.2.1 ISO/IEC 24752 Universal Remote Control, Presentation Template Mark-up
Language (PreT) 20
3.2.2 Extensible Interface Mark-up Language (XIML) 22
3.2.3 Extensible Interaction Scenario Language (XISL) 24
3.2.4 Web Service Experience Language (WSXL) 25
3.2.5 User Interface Extensible Mark-up Language (UsiXML) 27
3.2.6 User Interface Mark-up Language (UIML) 28
3.2.7 Dialog and Interface Specification Language (DISL) 30
3.2.8 Model-based Language for Interactive Applications (Maria XML) 31
3.2.9 Voice XML 33
3.2.10 Extensible Application Mark-up Language (XAML) 34
3.2.11 XML User Interface Language (XUL) 35

D3.1 Report on user interface analysis

 AALuis iv

3.3 Results of the UIDL Analysis 37
4 Enabling Freedom of Choice of User Interfaces 38

4.1 Consistency of Multiple User Interfaces 38
4.1.1 Three-dimensional model of interface consistency 38
4.1.2 Multiple User Interfaces and Consistency 38
4.1.3 Usability and UX Assessment of MUIs 39
4.1.4 Design Frameworks for consistent MUIs 43

References 44

D3.1 Report on user interface analysis

 AALuis v

Table of Figures

Figure 1: Movement Times 4
Figure 2: Copy gesture 8
Figure 3: NFC Interface 9
Figure 4: The uncanny Valley 17
Figure 5: Cross platform service UX 42

List of Tables

Table 1: Strategies for single Touch input 3
Table 2: Problems in using a Touch Terminal 5
Table 3: UIDL Assessment 37
Table 4: MUI Usability 40
Table 5: Multi device analysis grid 40

Abbreviations

Abbrev. Description

AAL Ambient Assisted Living

AAL JP Ambient Assisted Living Joint Programme

UI User Interface

UIDL User Interface Description Language

UX User Experience

D3.1 Report on user interface analysis

AALuis 1

Executive Summary
The final goal of AALuis, to provide a flexible middleware layer to offer various services
with a broad range of user interfaces in order to meet the needs of different people with
disabilities and arising special needs, requires a flexible and extensible approach for user
interface specification. User Interface Description Languages (UIDLs) have been
introduced by research and industry to provide this kind of flexibility. In this deliverable the
most promising UIDLs were analysed with respect to AALuis criteria with the result that
MARIA XML, UsiXML and DISL are ranked best. The accordant criteria comprise level of
abstraction, adaptability, openness and current status of development.
The opportunities of the AALuis middleware shall not only be demonstrated with existing
services and user interfaces but also with the development of new and innovative
approaches for interaction that are eligible and helpful for older people. For this reason
existing knowledge and published ideas of interaction modalities for older people were
explored, too. So the most promising approaches touch interaction, avatars and voice-
based interactions were investigated in this deliverable. By this means we can stick to the
collected guidelines and benefit from shared insights e.g. for touch interactions: to utilise
eligible target and font designs, to avoid complex user interface elements and multiple
input at one time as well as to focus at assuring good affordance and learnability.
As users of AALuis enabled devices shall have the choice out of a broad range of devices
meeting their personal needs and contexts it is important to assure the best consistency
possible. Users shall perceive the same service in different contexts and with different
devices as all of a piece. For this reason this deliverable also introduces appropriate
concepts like the three-dimensional model of interface consistency or the initial framework
of cross-platform service user experience.

D3.1 Report on user interface analysis

AALuis 2

1 About this Document
1.1 Role of the deliverable
This deliverable presents the results of the user interface analysis for the AALuis project.
We analysed relevant user interface issues from two perspectives: On the one hand side
we investigated interaction modalities and consistency issues with respect to older people
thus the end-users of AALuis, and one the other side we reviewed existing technical
solutions in order to make use of existing specifications and therewith to avoid spending
efforts on repetitive actions. As for the strict separation of services and its user interface
abstraction levels are necessary the analysis of existing User Interface Description
Languages (UIDL) was a key task for this deliverable.
The results of the analysis flow directly into the upcoming specification of the AALuis user
interface layer and the user interface design. For this reason we also included relevant
guidelines for designing user interfaces for older people in order to assure the creation of
effective, efficient and satisfying user interfaces right from the start and before the
conduction of first usability tests.

1.2 Relationship to other AALuis deliverables
The deliverable is related to the following AALuis deliverables:

Deliverable: Relation

D3.2 The results of the analysis flow directly into the upcoming specification phase and thus
have a direct influence on the description of the user interface specification.

D2.1 Parallel to the user interface analysis the analysis of middleware took place. The
middleware will be the connecting element between user interface and provided service
and thus the technical solutions have to stick together.

D4.1 Apart from user interface and middleware the existing services have been analysed. For
providing the services to end users appropriate user interfaces have to be rendered and
should therefore be able to fulfil their requirements.

D3.1 Report on user interface analysis

AALuis 3

2 Interaction Modalities for Older People
The AALuis platform will allow connecting a broad range of services with any kind of user
interface. This has the advantage that every person gets access to every connected
service by using their preferred interaction modalities and devices. As the development of
new user interfaces for any group of users with several impairments and needs is far
beyond the scope of this project we analyse those interactions modalities that are
applicable for the defined target groups of the AALuis project.

2.1 Touch interaction: advantages and risks
Various age-related disabilities affect the way elderly can interact with computer systems.
Chaparro et al. (1999) [4] and Wood et al. (2005) [53] have shown that the handling of
computer with keyboard and mouse can cause problems with older people. Touch-
interaction is commonly seen as an easier approach to engage older adults in interacting
with computers, since it is a more direct interaction as with a computer mouse, without the
need for an advanced mental model. The most obvious advantage of touch-screens is
according to Greenstein and Arnaud (1988) [8] that the input device is also the output
device. Besides systems using touch screens are not regarded as computers when using
known metaphors (Vastenburg et al. [50]). In addition there is no need for special motor
skills (Wood et al., 2005) [53]. However, designing touch interaction needs special
attention, especially if it is supposed to be used by elderly people.

2.1.1 General (not age-related) insights from research

2.1.1.1 Evaluation of Touch strategies:

Potter et al. [30] evaluated three strategies for single touch input:

Land-On (L) First-Contact (F) Take-off (T)

Only first contact is used

Selection only, if first contact hits a
target

All position data is used until first
contact with a target

Selection upon first contact with
a target

All position data is used until
release

Selection if target is in contact
during release

Table 1: Strategies for single Touch input
There are three interaction modalities for single touch input: land on, First contact and Take off

They found the following:
Performance – Time
(F) showed the best results (16.93 sec) and was significantly faster than (T) (20.92 sec),
while (L) did not differ significantly (17.73 sec).
Performance – Errors
(T) showed significantly fewer errors (mean=2.25) than (L) (mean=5.08) and (F)
(mean=4.08).
Subjective Evaluation
(T) was significantly rated higher (mean=6.75) than (L) (mean=5.63) and (F) (mean=5.96).

D3.1 Report on user interface analysis

2.1.1.2 Evaluation of Thumb Input for Touch Screens:

Perry and Hourcade (2008) [35] evaluated one handed thumb input tapping devices.
Hand used

• The movement time was 100ms higher when the non-preferred hand was used
• The accuracy was 5% lower when the non-preferred hand was used

Walking vs. Standing
• Walking vs. standing has no significant effect on moving time

Target Position
• The target position has on both hands a significant effect on movement time (the

more central the faster) and accuracy (see Figure 1)

Figure 1: Movement Times
The left image shows the mean movement times for both hands (in ms), while the image to the right shows
the mean accuracy rates for both hands [35].

Target Size

• The target size has on both hands a significant effect on accuracy
The study from Park et al. (2008) [34] showed that the button size has a significant
influence on the number of errors, the success rate and the pressing convenience,
meaning the larger the key, the lower the errors and the higher the success rate and
pressing convenience. The results of a study by Parhi et al. (2006) [33]are that buttons
should be approximately 9.2mm for a mobile device. At this size, the targets are “as small
as possible without decreasing performance and user preference“. Also have look at the
correspondent guidelines in chapter 2.1.3.

AALuis 4

D3.1 Report on user interface analysis

2.1.2 Age-related insights

2.1.2.1 Experiences with touch screens:

Touch screens that work for younger adults can cause problems for older adults [9]. Table
2 presents the results to the question whether the test persons have problems to use a
touch terminal.

Table 2: Problems in using a Touch Terminal
Answers to the question whether test persons have problems to use a touch terminal:
(1) No and few problems (2) Avoidance of usage (3) problems

Screen size
For touch gestures being performed on larger screens deviation got larger but no relation
with age could be observed [46].
Time & accuracy
According to Stößel (2009) [46], older users are „about 1.3 times slower […] than younger
users“ but concerning accuracy of gesture execution no significant influence of age was
found.
Apted et al. [1] examined how elderly people interact with a multi-user tabletop sharing
system using single and multi-touch gestures. The results show that elderly users need
nearly twice as long as younger users for learning and understanding the systems
interaction paradigms but catch up while using the system afterwards.
Interaction and Navigation
Numerous studies developed and validated guidelines regarding the layout of information
and interaction elements and the navigation through the system. Focusing the design of
web sites, Kurniawan and Zaphiris (2005) [18] have developed a set of guidelines that
take into account elderly users. According to this study it’s important to avoid deep
hierarchy and to group information into meaningful categories. Complex interaction
elements as pull down menus and scroll bars, as well as elements that have to be double-
tapped, should be avoided. Furthermore, they recommend the system to avoid more than
one open window, to align all interface elements in a horizontal and vertical grid and to
concentrate the information in the center of the display. Important information should be
highlighted.
In addition to these guidelines that were proposed with regard to conventional screens,
some studies analyzed the special requirements of touch screen systems. As Yang (2008)
[54] states, complex control techniques should be avoided – elderly people may find it
hard to perform sliding and rotating touch screen gestures. The use of familiar gestures,
i.e. gestures that correspond to the real world, reduces the error rate compared to
standard touch-interaction (Guerreiro et al. 2008 [10], Roudaut 2009 [39]). Concerning the
arrangement of information and interaction elements, headlines, as the major information,

AALuis 5

D3.1 Report on user interface analysis

AALuis 6

should be displayed at the top and buttons on the bottom of the interface, so the input-
hand would not hide the screen (Lorenz et al., 2007) [22]. Furthermore it should be
considered, that the screen may be large, so users are unable to reach the whole screen
easily (Apted et al. 2006) [1].
Information Input
Maguire (1999) [23] addressed information input on touch-screen devices specifically for
elderly: Information input should be as simple as possible, only one input at a time. A
sequence of prompts is preferred compared to a form-filling style of input. Furthermore it is
important, to avoid requiring long textual inputs to the system and to clearly highlight the
input position or focus on the screen. The virtual keyboard should provide a “Backspace”
button to correct entered text and/or a “Clear” button to clear the whole input.
Target Design
The design of interactive targets, such as buttons or menus provides challenges first due
to the very nature of the human fingers, the latter due to reduced motor skills. Both
demand larger targets (Jin et al., 2007 [16]; Yang, 2008 [54]), but there are several other
issues that need to be considered. While target size matters, bigger spacing between
targets apparently does not improve usability (Schedlbauer, 2007 [42]; Sun 2007 [47]).
Several studies have shown that elderly users demand clear and meaningful target
captures (Kurniawan and Zaphiris, 2005 [18]; Lorenz et al., 2007 [22]) and, furthermore,
the interface should allow to easily resize the target elements (Apted et al., 2006 [1]).
Use of Colour and Graphics
When using interactive systems elderly people might have difficulties with the use of
colors, graphics, icons and background. To address these aspects many guidelines have
been developed. Considering elderly people using web-based interfaces, Kurniawan and
Zaphiris (2005) [18] found that they prefer the use of graphics if they belong to the content
and are not just used for decoration. Animated elements tend to confuse older users and
should therefore be avoided in general while animated avatars are considered helpful.
Icons should be simple and meaningful (Kurniawan and Zaphiris, 2005) [18], need to be
large enough to be identifiable by people with reduced eyesight (Bhachu et al., 2008) [3]
and have to provide labels (Maguire, 1999) [23].
Regarding the use of color, for elderly people it is even more important than for younger
users that the screen provides a high contrast between foreground and background
(Kurniawan and Zaphiris, 2005 [18]; Maguire, 1999 [23]; Young, 2008 [54]). Therefore,
colors should be used conservatively. The number of colors should be kept within
reasonable limits (4 or 5) (Kurniawan and Zaphiris 2005 [18], Maguire 1999 [23]). Visually
impaired users prefer color-neutral layouts (Lorenz et al., 2007) [22]. Combinations of
blue/green, red/green and red/blue tones should be avoided (Kurniawan and Zaphiris,
2005 [18]; Maguire, 1999 [23]). Colors can be helpful to structure the display, group
categories of data and to help identifying target elements (labels, entry fields, prompts etc.)
(Maguire, 1999) [23]. Regarding touch screens, touch areas or screen buttons should be
easily distinguishable from other graphics (Maguire 1999) [23].
Text Design
Regarding the special needs of visually impaired people, the layout and formatting of the
text is an important factor regarding the interface design for elderly users. With regard to
this, lessons learned from conventional screens are, to the greatest extent, also valid for
touch screen interfaces. Small font sizes (< 12 pt.) and serif font types should be avoided
(Yang, 2008 [54]; Lorenz et al., 2007 [22]; Kurniawan and Zaphiris, 2005 [18]). Text should

D3.1 Report on user interface analysis

AALuis 7

be left justified, have clear headings and the lines should be short in length (Kurniawan
and Zaphiris, 2005 [18]; Maguire 1999 [23]). Enough spacing between the lines eases
reading longer text segments (Kurniawan and Zaphiris 2005) [18]. Furthermore different
fonts may be used to help distinguish between system messages and user entry (Maguire
1999) [18]. Also have look at the correspondent guidelines in chapter 2.1.3.
User Feedback
Touch interfaces mostly offer only a visual feedback when a button is pressed. This visual
feedback is further interfered by the user’s fingers, thumb or hand [34]. Multimedia
interfaces improve the memorization of information. Only 10% of visual and 20% of audio
feedback is remembered, while 50% of combined visual and auditory feedback stays in
memory, and even 80% of hearing, seeing and acting together (Yang, 2008) [54]. This
way, multimedia-based feedback (visual, aural) or speech output can provide a
communicative and easy environment (Tsai, 2009 [49]). Jacko et al. (2004) [16] found that
both novice and experienced older users can benefit from improved feedback
combinations more significantly than the younger user groups. The results suggested that
auditory feedback caused the greatest improvement in performance error reduction.
However, audio feedback for lengthy inputs can be annoying to the user (Maguire, 1999
[23]).
If the system response to user input takes more than 2 or 3 seconds, users may start to
feel that a fault has occurred (Maguire, 1999 [23]). For audio feedback it needs to be
considered that, while frequency matters, according to Yang (2008) [54] modifying the
speed of speech does not affect accessibility of the elderly. Lower sound frequencies are
more appropriate for the older person (Hawthorn 2000 [12]).
Cognition and design of touch interfaces and gestures
To help people lacking knowledge about the standard window interaction metaphor and to
avoid greater difficulties in learning new concepts and declining short term memory the
user interface design should focus on learnability and memorability. Alternative solutions
have been suggested, such as animated conversational agents and interfaces that rely on
familiar aspects of manipulating physical objects and use metaphors (Apted et al., 2006
[1]; Stößel et al. 2009 [46], Yang 2008 [54]).
The number of interface elements should be minimized (Apted et al. [1], 2006; Lepicard
and Vigouroux, 2010a [20]; Lepicard and Vigouroux, 2010b [21]). If new interface
behaviors appear, new objects should be used to avoid clashes with the user’s existing
knowledge (Apted et al., 2006 [1]). Functionalities that require conceptual background
knowledge should be avoided (Yang, 2008) [54].
In a multi touch study elderly users had problems with a specific gesture (the copy-
gesture), because of not remembering it from the tutorial and of hesitating to interact with a
second finger or hand (see Figure 2, out of Apted et al., 2006 [1]).
In general, multi-touch devices show potential to substantially alleviate interactions for
elderly people. In particular, simple gestures (like crossing out, ticking off) seem to be
easier to understand and to learn than traditional ways like pressing a certain button
(Stößel 2009[46]).
Norman (2010) [30]identified a number of challenges that gestural interfaces must cope
with, e.g. the lack of feedback and the lack of support for discovering specific
functionalities. Since gestures are unconstrained, they are vulnerable to be performed in
an ambiguous manner; in this case, constructive feedback is required to allow the person
to learn the appropriate way to trigger a specific action.

D3.1 Report on user interface analysis

Figure 2: Copy gesture
The copy gesture: Left finger and picture remain stationary while the copy appears beneath the right finger,
when it is moved away.

On the other hand, gestures may be easier to learn and remember when designed to
reflect manipulations of real world physical objects. According to Guerreiro et al. (2008)
[10] and Roudaut (2009) [39] familiar gestures reduce the error rate compared to standard
touch interaction. However, the older adults’ mental model of the world is significantly
different than mental model of younger people due to advancement of technology in the
years that passed. A 70 years old person has a different idea of how a telephone works
than a 17 years old person, due to differences in telephones from the periods in which
they grew up. This should be taken in account when replicating real world manipulations in
interfaces for the elderly.
Wobbrock et al. (2009) [50] developed an approach for the design of multi-touch gestures
that relies on eliciting gestures from non-technical users. The results of this study suggest
that users don't care about the number of fingers used in the gesture, prefer one hand
over two and are strongly influenced by the desktop paradigm. Furthermore, they found
out that there is little agreement over what gesture would be appropriate for a specific
command.
Interacting with gestures can be more entertaining and may encourage people to intuitively
explore the interface. For this reason, multi-touch interfaces should be discoverable so that
people can find out for themselves how they work (Saffer, 2008) [41].

2.1.2.2 Experiences with NFC-based touch interactions:

Häikiö et al. (2007) [11] developed a meal ordering system where a NFC-enhanced mobile
phone was used as a user interface element so as to enable home-dwelling elderly people
to choose their meals to be delivered by means of a home care service (see Figure 3).
Most participants (average age of 76,6) had memory disorders of differing levels assessed
with the Rava index [39] and only those elderly persons with lowered functional
capabilities were accepted. In the training session all the participants adopted the touch
interaction method easily regardless of their motor skills. Although the meal ordering
became easier and faster (instead of calling) four out of nine participants preferred the
older catering practice and did not think that the application would provide them with
added value.

AALuis 8

D3.1 Report on user interface analysis

Figure 3: NFC Interface
For selecting their preferred meal users had to hold a NFC-enhanced mobile phone at the accordant letter
Experiences with Pen-based touch screens:

Moffatt and McGrenere (2007) [26] found out, that there are three main problems when
using a stylus based interface. While all of them apply to older users and two to younger
usurers as well:

1. Slipping: the target was selected, but before releasing (lifting the pen) the users
unintentionally slip off (only older users)

2. Drifting: an adjacent menu is opened accidently by hovering over
3. Missing just below: instead of the target item, the one just below is selected via

selecting the top edge
Further, Moffatt et al. (2008) [27] examined if drifting could be avoided by using new
strategies like “Tap” or “Glide”. “Tap” requires an explicit click for changing menus while
“glide” uses a distance threshold for controlling if a switch is desired or not.

2.1.2.3 Touch interaction vs. Pen interaction:

Iglesias et al. (2009) [15] compared touch interaction and RFID-based pen interaction
for/with elderly users. The results show that touch interaction is “easy and comfortable for
them” and that “they showed their preferences for the touch screen”. Regarding the time
used for completing the given tasks, both methods are similar.

2.1.3 Guidelines
In this section we provide some guidelines for user interface design for touch screens with
respect to older people that have been derived from various research investigations.
Although some of the guidelines are especially derived for web design those presented
here also apply for touch screens.

2.1.3.1 Web Design Guidelines for Elderly (Source: [18])

Target Design
• Provide larger targets

• There should be clear confirmation of target capture, which should be visible to
older adults who should not be expected to detect small changes

AALuis 9

D3.1 Report on user interface analysis

AALuis 10

• Older adult should not be expected to double click
Graphics

• Graphics should be relevant and not for decoration. No animation should be
present

• Images should have alt tags

• Icons should be simple and meaningful
Navigation

• Extra and bolder navigation cues should be provided

• Clear navigation should be provided

• Provide location of the current page

• Avoid pull down menus

• Do not use a deep hierarchy and group information into meaningful categories
Browser Window Features

• Avoid scroll bars

• Provide only one open window e.g., pop-up/animated advertisements or multiple
overlapping windows should be avoided

Content Layout Design
• Language should be simple and clear, and unambiguous

• Avoid irrelevant information on the screen

• Important information should be highlighted

• Information should be concentrated mainly in the centre

• Screen layout, navigation and terminology used should be simple, clear and
consistent

User Cognitive Design
• Provide ample time to read information

• Reduce the demand on working memory by supporting recognition rather than
recall and provide fewer choices to the user

Use of Colour and Background
• Colours should be used conservatively

• Blue and green tones should be avoided

• Background screens should not be pure white or change rapidly in brightness
between screens. Also, a high contrast between the foreground and background
should exist, for example, coloured text on coloured backgrounds should be
avoided.

• Content should not all be in colour alone (colour here is denoted by all colours other
than black and white)

D3.1 Report on user interface analysis

AALuis 11

Text Design
• Avoid moving text

• Text should be left justified and text lines should be short in length

• There should be spacing between the lines but not too much either

• Main body of the text should be in sentence case and not all capital letters

• Text should have clear large headings

• Use san serif type font i.e., Helvetica or Arial of at least 12 point size. Avoid other
fancy font types.

User Feedback & Support
• Provide a site map

• An online help tutorial should be provided

• Support user control and freedom

• Error messages should be simple and easy to follow

2.1.3.2 Heuristics for Older Adults as Web Users (Source: [5])

Use conventional interaction elements.
• Does the site use standard treatments for links?

• Is link treatment the same from section to section within the site?
Make clickable items easy to target and hit.

• Are buttons large enough to easily see the image or text on them?

• Is the area around buttons clickable?

• Is there enough space between targets to prevent hitting multiple or incorrect
targets?

• Do buttons and links enlarge when the rest of the text size is increased?
Minimize vertical scrolling; eliminate horizontal scrolling.

• Does the site work at the resolution at which the user would typically view the site
without horizontal scrolling?

• Do pop-ups and secondary windows open wide and long enough to contain the
content without the need for scrolling?

• For scrolling lists, for example, a list of all the states:

• Are checkboxes used rather than drop-down (a menu that drops down when
requested and stays open without further action until the user closes it or chooses a
menu item) or pull-down menus (a menu that is pulled down and that stays
available as long as the user holds it open)?

• If not, are drop-down menus used rather than pull-down menus?
Let the user stay in control.

• Is there no rolling text that goes by automatically?

D3.1 Report on user interface analysis

AALuis 12

• Does the site use static menus (a click leads to another page) rather than “walking
menus” (exposing a sub-menu on hovering the mouse over the label)?

• If there are walking menus, do they expand on a click (rather than a hover)?

• Are the sub-menus timed to stay open for at least5 seconds or until they’re clicked?
Provide clear feedback on actions.

• Are error pages descriptive, and did they provide a solution to the user?

• Are confirmation pages clear?
Provide feedback in other modes in addition to visual.

• Are captioning and/or meaningful alternative text provided for images, video, and
animation?

• Does the site support haptics?
Clearly label content categories; assist recognition and retrieval rather than recall.

• Are labels descriptive enough to make it easy to accurately predict what the content
will be under each topic category?

• Do labels and links start with different, distinct, and relevant key words?

• Are labels useful and understandable each on their own?

• Do labels reflect language that older adults are familiar with?
Implement the shallowest possible information hierarchy.

• Are important, frequently needed topics and tasks closer to the surface of the Web
site?

• Are related topics and links grouped and labelled?

• Do labels and category names correspond to users’ tasks and goals?

• Do paths through the information architecture support user’s tasks and goals?

• Is the path for any given task a reasonable length (2–5 clicks)?

• Is the path clear of distractors and other obstacles to reaching task goals?

• Are there a few, helpful cross-referenced links that are related to the current task
goal?

• Do redundant links have the same labels?
Make pages easy to skim or scan.

• Are pages clean looking and well organized (versus cluttered or busy)?

• Is there a clear visual “starting point” to the page?

• If pages are dense with content, is content grouped or otherwise clustered to show
what is related?

• Is it easy to tell what is content and what is advertising?

• Do task-supporting keywords stand out?

• Are images relevant to, and supportive of, the text content?

D3.1 Report on user interface analysis

AALuis 13

• If there are videos or animated sequences, do they support specific goals or tasks?
Make elements on the page easy to read.

• Is the default type size 12-point or larger?

• Is the type size on pull-downs and drop-down menus the same size as the text
content? Does it change when the user increases the type size?

• Are headings noticeably larger than body content (18- or 24-point)?

• Is sans serif type used for body content?

• Are headings set in a typeface that is easy to read?

• Are there visual cues to direct users’ attention to important items that are in the left
and right columns?

Visually group related topics.
• Is the amount of information—sparse, dense, or in between—appropriate for the

audience and type of site?

• Are the most important and frequently used topics, features, and functions, close to
the centre of the page rather than in the far left or right margins?

• Are task-related topics grouped together?

• Are frequently used topics, actions, and links „above the fold”?
Make sure text and background colours contrast.

• Are text and interaction elements a different colour from the background (not just a
different hue)?

• Do the colours that are used together make information easy to see and find?

• Are clickable items highlighted differently from other non-clickable highlighted
items?

• Are multiple types of highlighting minimized on each page?
Use adequate white space.

• Are there visual cues in the layout of the page that help users know there is more
content “below the fold”?

• Are there at least 2 pixels of line space between clickable items?

• Is body text broken up with appropriate and obvious headings?
Make it easy to find things on the page quickly.

• Is the amount of text minimized; is only necessary information present?

• If there are introduction paragraphs, are they necessary?

• Are instructions and messages easy to recognize?

• Is there liberal use of headings, bulleted lists, and links to assist skimming?

• Do bulleted lists have the main points and important keywords at the beginning of
each item?

• Do links have meaningful labels?

D3.1 Report on user interface analysis

AALuis 14

• Are buttons labelled clearly and unambiguously?

• Do button and link labels start with action words?
Focus the writing on audience and purpose.

• Is the content written in active voice, directed to “you”?

• Are sentences short, simple, and straightforward?

• Are paragraphs short?

• If humour is used, is it appropriate?

• Are headings, labels, and captions descriptive of associated content?

• Are conclusions and implications at the top of a body of text, with supporting
content after? (inverted pyramid)

Use the users’ language; minimize jargon and technical terms.
• Does the site use words that older adults know?

• If there are technical words or jargon, are they appropriate for the level of domain
expertise that the audience has?

• If there are new or technical terms, does the site help users learn what the terms
mean?

• Are concepts and technical information (such as safety and effectiveness
information about a prescription drugs) written in plain language?

• Are instructions written in plain language?

• Is the reading level appropriate for the capabilities of the audience and their literacy
in the topic area? Is it easy to draw inferences and to understand the implications of
text?

2.1.3.3 Heuristics for Tabletop Systems (Source: [1])

Design independently of table size Design for different tabletop sizes and allow
flexible resizing of all interface elements.
Interfaces should not be constrained to a particular table size, and designers must
consider that some interface elements may need to be regularly enlarged depending on
the task or to be legible by all users (particularly those with restricted eyesight or the
elderly).
Support reorientation
Allow all interface elements to be easily rotated to support users working at any position
around the table, and consider users moving around the table while using it. People
should be able to view and interact with the table at any position around it, and interface
elements should be easy to rotate.
Minimise human reach
Consider that users may not be able to physically reach all interface elements. Elements
must be moveable to all areas of the table. Interface elements should not be fixed, as that
could constrain users’ positions at the table, and cause usability problems if some

D3.1 Report on user interface analysis

AALuis 15

elements are unreachable. Designers must also consider social expectations that prevent
users from reaching in front of others.
Use large selection points
Design independently of table top input hardware, but support large input cursors (e.g.
human fingers) where possible. To provide a natural interface with the restricted input
available at table tops, interface elements should be usable through direct-touch
interaction with large fingers or other input styli.
Manage interface clutter
Support quick removal or hiding of objects on the table top, while ensuring management of
clutter by one user does not have unwanted side-effects on other users of the table.
Clutter management is a significant problem to address in table top interface design, due
to constraints on display and input technology, table size, and supporting multiple people
working concurrently.
Use table space efficiently
Avoid modal behaviour that limits the utilisation of table space. Allow arbitrary groupings of
interface elements for personal and group spaces. Modal behaviours, such as confirmation
dialogs that take focus away from the rest of the table, constrain multi-user collaborative
interaction. It is also important to support people forming personal and group spaces— a
natural tendency when collaborating at a table top.

2.2 Avatars: an opportunity to involve older people
The acceptance of the applied assistive technology is the crucial factor if the user can
derive a benefit from the applied technology or not. Beside the fact that the benefit of using
new devices must be appreciable, in order to provide a motivation for its use [78], there
can even be "a need for an emotional relationship" between the users and their Assistive
Technology as described by Wu P. 2005 [84].
In addition the paradigm shift from "the computer used as a tool" to "the computer used as
an assistant", the vision of ICT for everyone without any barriers that might cause a "digital
divide" and the request to make technology friendly, polite and fun to use have caused a
widespread use of avatars in many fields (e.g. internet pages, movies, computer games
and kiosk situations).

2.2.1 What is an avatar?
An avatar can be seen as consisting of "body and mind" (compare to Spierling
200649[82]): A software agent builds human models like emotional states, models of
cognition and knowledge. The software agent can be seen as the mind of the avatar.
These models are presented to the exterior using visually human models. This
visualization can be seen as the body of the avatar
To use photo realistic talking heads can be a method to make a computer based system
being perceived more personal by people with dementia. Like this the acceptance of such
a system can be increased. This effect is especially fostered by using photos of known
faces as basis to create talking heads.
At AIT studies have been carried out concerning the use of artificial talking heads as part
of the user interfaces for assistive devices for elderly people – with and without dementia.

D3.1 Report on user interface analysis

AALuis 16

The studies were embedded into a master thesis [80] and in the project Avatars@Home
(in cooperation with CURE) [81]. The results are summarized in the following chapters.

2.2.2 Perception of Avatars
Selection of faces for avatars:
When also known faces were offered, tests showed that only photos of familiar persons
were chosen to be used as instruction giving talking heads. The combination of relatives
and known formal caregivers seem to fit the wishes of the subjects. For further testing but
also for the real setting of such a system, photos of more relatives should be available.

2.2.2.1 Audio Visual perception:

The visual impression of the talking head influenced the acoustic perception, leading to the
impression that even the used synthetic voice was the original voice of the underlying
person of the talking head. This was even the case by subjects being confronted with an
avatar of their own children. Especially if voice and face were felt matching, the avatar
based user interfaces are more preferred then text and voice interfaces only.

2.2.2.2 EyeCatcher Effect

When a new scene is displayed at the screen and the user is not aware of it, avatars can
be used as a kind of eye catcher to get the user's attention and also to keep it on the
screen where also the task message is displayed and spoken by the avatar.
Just "calling" the user, like "Hello Mum" or "Mrs. B..." is not enough. Like this the shown
head helps to “localize” the origin of the perceived voice. „The most crucial point is that
using photo realistic avatars can lead to interpersonal reactions - with positive and
negative effects”. This strongly relates to the Uncanny Valley:

2.2.3 The Uncanny Valley
Masahori Mori describes the human psychological reaction to robotic design, which is also
applicable to interactions with nearly any non-human entity [83]. The idea is that if a curve
describes the emotional response against similarity to human appearance and movement,
the curve is not a sure, steady upward trend. Instead there is a peak shortly before the
inhumane entity reaches a completely human “look”. This peak is followed by a strong
negative response before rebounding to a second peak where resemblance to humanity is
complete.
In this uncanny valley between the two peaks, a person sees a figure or object that looks
nearly human but enough off-kilter to seem eerie or disquieting [79]. To avoid falling in the
“uncanny valley”, M. Mori suggests designers of robots or even developers of prosthetic
hands to take the first peak as goal rather than the second. Even though the second peak
is higher, there is a far greater risk of falling into the uncanny valley

D3.1 Report on user interface analysis

Figure 4: The uncanny Valley
This graph describes the uncanny valley. The more natural a character looks like, the more it is “liked” until
a certain point, when it cannot be said, whether the character is human or not. This valley is combined with
fear. When the character reaches a very high level of anthropomorphism, where it is realized as human,
this likability rises again.

Virtual “humans” also raise this curve concerning the relation between their reached level
of humanity and the viewers perceived feeling of familiarity. Two and three dimensional
computer animated characters are still not looking human, especially in their movements.
Human beings are especially skilled in recognizing faces. This on one side allows
recognizing a person that has not been met for a long period. On the other side, if a single
part of a known face does not comply with the familiar appearance, this fact is detected
immediately most of the time.
Till now, no information could be found about the uncanny valley of “virtual characters” and
persons with cognitive impairments, in particular persons with dementia. Demented person
soften have problems recognizing known faces, even of their spouses or their own
children. If an avatar or a talking head is created by a photo of a well known person, how
will a demented person perceive the (up to now still inescapable) unnatural appearance of
the (known) human head especially during movements as talking [80]?
Some research can be found on dolls, artificial pets, etc. and the likeability by people with
dementia [85][86].

2.3 The chances of Voice-based interaction
Enabling voice interaction reveals various chances. First of all, if the visual sense is
handicapped the service system can provide linguistic information to the users by voice
output. This is also the case for situations where the spatial configuration does not allow to
place the display of the device that serves as user interface of the service into the field of
view of the user - e.g. in the dark bedroom - , or if the user needs his/her visual attention
elsewhere - e.g. while operating the oven for the preparation of meals.

In the other direction, i.e. voice input to the service system, voice can replace input
modalities like typing a text or touching a visual representation of a user interface item (like
pressing a button or selecting an icon). This again is especially useful if the user cannot
actually see the user interface items like keyboard or button/icon due to visual impairment,
or the user interface device is out of reach or the user needs his/her hands for other
purposes than to handle the device, e.g. while moving a wheelchair.

AALuis 17

D3.1 Report on user interface analysis

AALuis 18

Voice interaction is especially useful in the context of Ambient Assisted Living for elderly
as the users of such systems and services often have special essential needs and at the
same time reduced abilities to handle user interface devices.

D3.1 Report on user interface analysis

AALuis 19

3 User Interface Description Languages1
In order to reach the desired flexibility of user interfaces within the AALuis approach
proprietary solutions are not feasible. For this reason the usage of user interface
description languages (UIDL) is necessary. Instead of creating an UI for a specific platform
the UI will be modelled in a more abstract UIDL format. This section analyses existing
UIDLs with respect to the AALuis criteria.

3.1 Analysis criteria for UIDLs in AALuis
Level of abstraction
UIDLs must be sufficiently abstract to allow the creation of multimodal user interfaces,
meaning user interfaces for different devices that use different interaction modes. For
example, the user interaction with a PC with mouse and keyboard is totally different from
that with a mobile phone with multi-touch-screen, or a car-radio featuring only voice
interaction.
Requirements for a high level of abstraction are that no information about the use of
specific user interface widgets is encoded, as well as that no concrete layout information is
given since this information might only be used by graphical user interfaces on a certain
type of display.
Adaptability
This criterion concerns the possibility to adapt user interfaces automatically based on
different environmental settings. For the AALuis project, the following three characteristics
are important:

• Accessibility: The user interface should automatically adapt to user preferences,
based on a user's abilities and disabilities. This is important especially to users of
AAL environments, because most of them use these systems to overcome physical
disabilities.

• Use-case awareness: In different use cases, different UI devices are used. For
example, for activating and deactivating a service, a mobile phone is mostly used
because the user can carry it with him, while changing the basic setup of a service
is carried out using a PC due to the more sophisticated input mechanisms.

• UIDLs should know about the capabilities of UI devices and automatically adapt
user interfaces to provide different functionalities on different devices as well as
present the user interface in the way that is supported best by each type of device.

• Context-awareness: Finally, it is desirable to automatically adapt the presentation of
a user interface based on environmental influences, for example physical conditions
such as the intensity of light around the UI device.

Openness
This criterion evaluates how much information about a UIDL is freely available, and how detailed
this information is. In addition, it concerns licensing issues.

1 The content of this section is based on the Master Thesis “User Interaction Description Languages to
create accessible interfaces for elderly people“ by Andreas Kuntner

D3.1 Report on user interface analysis

AALuis 20

The aim of this criterion is to give an overview of the history and the current development status of
a UIDL. It answers the following questions:

• When did the development of the first version start?

• How many versions have been published?

• Which is the latest version, and when has it been published?

• Is the language still further developed?

• Is a standardisation process of the language specification planned, or has it been
accepted as national / international standard already?

It is also stated which type of organisation started the development of a UIDL, and if it has
an industrial or a research background.

3.2 Analysis of UIDLs
Various researches have been conducted on the comparison of UIDLs. For this reason we
refer in this section often to secondary literature.

3.2.1 ISO/IEC 24752 Universal Remote Control, Presentation Template Mark-
up Language (PreT)

The standard titled “Information technology - User interfaces - Universal remote console”
[56]defines the Universal Remote Console (URC) specification. The basic setup of a URC
environment consists of one or multiple target devices that provide services the user can
access through the use of one or multiple user interface devices. The concrete user
interface is rendered individually for the UI device’s platform at runtime, based on the
capabilities of the available services.
The capabilities of the target services are specified in target descriptions, their public
interfaces to be used by user interface devices are specified in user interface sockets, and
abstract user interfaces are specified for each target service in presentation templates. All
definitions are made available through XML documents.
User interface sockets are “an abstract concept that, when implemented, exposes the
functionality and state of a target in a machine-interpretable manner” [57]. A user interface
socket contains all information that is internally present in a target service implementation
and should be made accessible to the user. This includes (public) variables and functions
as well as notifications.
A Presentation Template (PreT) as defined in the presentation template mark-up language
maps elements of a user interface socket to interaction mechanisms. It contains abstract
interactors that are used for either presenting data to the user, or requesting input data
from the user. Each of these interactors is bound to exactly one element of the
corresponding user interface socket definition. All interactors are sufficiently abstract to
ensure that presentation templates can be used in any delivery context, meaning they are
modality-independent. They can be ordered as well as semantically or hierarchically
grouped within the PreT.
Interactors specified by the PreT mark-up language fall into one of the following
categories:

• Input interactors: Represent a request for user input.

• Output interactors: Used to present immutable data to the user.

D3.1 Report on user interface analysis

AALuis 21

• Command interactors: Bound to a command defined in the user interface socket;
used to activate a command.

• Notification interactors: Suspend the normal interaction to present information,
warnings or errors.

The PreT does not include resource information (labels, help texts, keywords etc.) as they
are part of the resource description (ISO/IEC 24752-5)
When using a URC-compliant user interface device to control a URC-compliant target
service, the UI device would request the presentation template from the device and directly
render and display a user interface based on the various definition documents.
Due to lack of adoption, the “Universal Control Hub” [58](UCH) was introduced as an
intermediate solution. The UCH architecture is an extension to the URC standard, which
introduces a URC-based gateway between target services and user interface devices,
allowing end devices that are not URC-compliant to communicate as proposed in the URC
specification. This approach therefore circumvents the restriction that direct
communication is only possible when all target devices and all UI devices implement the
URC specification.
Using UCH, the gateway transforms the presentation template delivered by the service to
a concrete user interface, written in any programming or user interface description
language that the user interface device’s platform can interpret. The only precondition for
this transformation process is that the gateway knows how to map abstract interactors to
elements in the target language, or that an external source of information is available that
describes this mapping. The concrete user interface description is then delivered to and
renderer and displayed by the UI device. Similarly, when the target service delivers data to
be presented to the user, or requests data from the user, the data is first processed by the
gateway and transformed to formats readable by the respective device.
Level of abstraction
The level of abstraction is quite high, although there are some restricting factors
concerning both user interface sockets and presentation templates:

1) Theoretically, presentation templates are modality-independent as the interactors
they consist of are sufficiently abstract to be used in any delivery context. In
practice, however, the set of proposed interactors seems to be quite closely related
to graphical user interfaces. One example concerns the input and text area
interactors: To distinguish between short and long string data types may be useful in
several delivery contexts, however the above-mentioned interactors use the number
of lines to express this distinction (single-line text input is accomplished by using the
input interactor, multi-line text input is accomplished by using the text area
interactor). When using voice-based interaction, for example, this criterion is not
available since spoken text is not divided into lines, therefore in such an
environment there is no difference between the input and the text area interactor.

2) There is no guarantee that user interface sockets are platform-independent, due to
the potential use of mapping elements in the socket definition.

Adaptability
The main goal of the URC standard is to let the user choose which device to use as
remote console for different target devices, which is an important step towards
accessibility (especially when compared to traditional systems that force the user to use a
specific remote control). However, an important improvement would be the option of

D3.1 Report on user interface analysis

AALuis 22

defining preferences on how user interfaces are a specific device (for example, using a
high contrast on graphical UI devices, or a certain level of loudness on voice-based
interaction systems). The URC specification does neither incorporate a user preference
definition system, nor other interfaces for external user preference descriptions.
Adaptability concerning different use-cases or contexts of use is currently not supported by
the URC framework.
Openness
The URC Standards Whitepaper [87] provides a basic overview of the elements of the first
URC specification that formed the ANSI/INCITS 389-393 family of standards, but detailed
information on the current (2008) version is only available from the ISO/IEC 24572
standard documents which are not freely available.
Status
The approach was proposed by the INCITS standardisation organisation in the US,
approved by the ISO international standardisation organisation, and is currently promoted
and implemented by an international consortium containing research organisations,
universities and industrial businesses. The URC specification was approved as a US
national standard in 2005 and as international standard in 2008, implementation work is
currently in progress by the URC consortium.
A reference implementation of the UCH architecture that is based on the URC framework
is available for the Java and C/C++ programming languages, developed by the University
of Wisconsin-Madison. Based on this reference implementation, several prototypical tools
were developed.
The prototypes developed by the URC consortium aim at use with mobile devices and
desktop computers.

3.2.2 Extensible Interface Mark-up Language (XIML)
The Extensible Interface Mark-up Language (XIML) is a framework for defining abstract
user interfaces and transforming them to concrete ones. In addition, it offers several
methods for the automatic adaptation of user interfaces, based on different criteria. Its
main focus is the use case of a generic user interface, defined once for an application that
can be executed on a variety of devices, using different platforms. [59]
XIML is an XML-based mark-up language. It specifies five basic components that together
build the core of an XIML user interface description:

• User component: Defines all users and groups of users that may operate the
system. Information is hierarchically structured. Characteristics are defined as key-
value pairs.

• Task component: Contains all parts of the business logic that require user
interaction, and leaves out business logic beyond the scope of user interaction. This
means it defines all tasks that the user may wish to accomplish through the user
interface. Information is hierarchically structured.

• Domain component: Contains a hierarchically structured collection of all data
objects the user can view or manipulate. It resembles a simple ontology, stored as
key-value pairs.

• Dialog component: A dialog component is the equivalent to the task component on
the level of concrete user interfaces. It contains a structured set of interaction items.

D3.1 Report on user interface analysis

AALuis 23

• Presentation component: The presentation component contains all concrete user
interface elements that are available in one concrete, platform-dependent user
interface. Each concrete user interface element references a UI widget present in a
particular widget toolkit. Therefore an XIML interface definition contains several
presentation components, one for each target end device that shall be supported.

XIML allows defining custom elements as content of presentation components, instead of
using toolkit-dependent widgets, to overcome the effort of creating specific presentation
components for each target platform. Presentation components that consist of such
custom elements require one additional transformation step before rendering, but can be
used in several XIML projects. Thus they reduce effort.
The component-driven architecture of every XIML interface definition guarantees a strict
separation of business logic, interaction definitions, and the rendering of concrete user
interfaces.
The different components present in an XIML interface definition are related to each other
in different ways. XIML does not provide a predefined, closed set of relations but allows
the definition of custom relations. These relations can then be used to model connections
between elements defined inside the same component as well as elements of different
components. For example, relations can be used to state that certain presentation widgets
(particular elements of presentation components) can be used to display a certain data
type (a particular element of a data component).
Level of abstraction
XIML's strict separation of business logic, interaction description, and UI rendering is a
crucial factor for a high level of abstraction and therefore support for many different target
platforms and modalities. Although the core XIML language is modality-extensible rather
than modality-independent (as a new presentation component must be created manually
for each additional modality to be supported), this drawback can be overcome by using the
concept of intermediate presentation components, as explained above.
Adaptability
XIML provides several methods for automatic adaptation of user interfaces, including both
built-in functionality and interfaces for external solutions. The specification of user profiles
and users' preferences is even one of the five core components of the language, namely
the user component. Personalisation is integrated into the basic XIML language, meaning
the automatic exchange of user interface widgets that present the same information in
different ways based on user preferences. Finally, the mechanism of automatically
generating rules for mapping intermediate presentation elements to concrete UI widgets
provides a flexible way to react to contextual settings, device capabilities, use-cases, user
preferences, etc.
Openness
An “XIML Starter Kit”, including the full XIML language specification, documentation,
samples, and tools is available for free after registration from the developer team's web
page [102].
Status
XIML was developed by the RedWhale Software Corporation, a software development
company specialised on user interface design concepts.1.0 is the latest version, and it was
published in 2002. The current development status is unknown.

D3.1 Report on user interface analysis

AALuis 24

The “XIML Starter Kit” contains two converters: one for HTML and one for WML (Wireless
Mark-up Language) output. Wireless Mark-up Language was developed as part of the
Wireless Application Protocol (WAP). It is used for the description of web content pages to
be displayed on old mobile devices that are not capable of rendering HTML or XHTML
content [89].
The HTML converter mentioned above was developed for use with desktop PCs, and the
WML converted was intended for use on mobile devices such as PDAs.

3.2.3 Extensible Interaction Scenario Language (XISL)
XISL is a language for describing online multi-modal interaction systems, using an XML-
based syntax. As the name suggests, it describes interaction scenarios rather than
concrete user interfaces, thus being applicable to many different interaction modalities.
XISL is based on existing open standards such as VoiceXML [60] and SMIL [61], but
advances their concepts in a modality-independent approach.
The basic purpose of an XISL document is to describe any web-based task a user might
wish to accomplish, independent of the terminal that is used for accessing the web. This is
done by precisely specifying the control flow between user and system, including both the
exact data that is exchanged and the direction in which the data is transmitted (either from
the system to the user, or vice versa). In addition, the exact order in which these data
transfers take place must be specified. All this can be encoded as a sequence of
interactions between user and system. Finally, those interactions must be specified in a
modality-extensible way in order to support any potential end device. [62]
In contrast to modality-independent approaches that define interactions in a way that can
be interpreted and rendered on different modalities, XISL follows a modality-extensible
approach: New input or output elements are added for each modality an interaction shall
support.
XISL introduces a dialog manager that acts as a middleware between web services and
user interface devices. The dialog manager ensures that the system is terminal-
independent and any end device can be used as terminal to the system. It contains a XISL
interpreter that parses XISL documents and is responsible for executing the correct
interactions at the right time.
When executing an interaction, the dialog manager sends the content of an input or output
element to the current user interface device. The user interface device need not include an
XISL interpreter as there is no XISL code for it to parse. The user interface is rendered
there based on the platform-dependent code contained in the input or output element, and
user input is transmitted back to the dialog manager which transforms it, if necessary, to
be readable by the web service.
Level of abstraction
The concept of describing web service access as a sequence of interaction scenarios is
quite generic as it does not include any modality-specific details. The same applies to the
application flow model that groups one input and one output interaction together and
provides mechanisms for executing these interaction scenarios in any order, depending on
user input, application state, etc. When it comes to a detailed definition of input and output
operations, the concept of the XISL language turns to a very concrete one, relying on
separate definitions for each modality. As a consequence, the level of abstraction of XISL
must be defined as medium: It offers rather abstract interaction description that needs to
be manually extended to be used in practice.

D3.1 Report on user interface analysis

AALuis 25

Adaptability
The concrete implementation of input and output operations is left to custom extensions;
these are responsible for rendering the user interface and adapting it to users' needs or
environmental settings. The XISL core language does not provide any framework for
automatic adaptation. The same applies to use-case awareness: The modality-extendable
system allows input and output interactions to be presented in quite different ways using
different modalities, but the execution of different interaction scenarios depending on the
currently used modality is not provided.
Openness
The full specification of both the core language and a front end extension is available
freely on the developer's web page; the latest version of both specifications is available
only in Japanese language however.
Status
XISL was developed by a research group of the Toyohashi University of Technology in
Japan. Version 1.0 (which was called “Extensible Interaction Sheets Language”) was
published in January 2002; the updated version 1.1 was published in April 2003. This is
the latest version; the current development status is unknown.
A full specification for PC, mobile phone and PDA platforms exists as extension to the core
XISL language, published by the same research group that developed the original XISL
language [90]. This extension specifies the content of input and output elements for these
platforms. In addition, a runtime environment was developed for XISL as part of the
Galatea Project [91] which provides a speech-based input and output system, featuring
animated virtual avatars.
The front end extension mentioned above covers traditional PCs and mobile devices, and
the Galatea project features speech-based input and output, totalling in three different
target platforms.

3.2.4 Web Service Experience Language (WSXL)
The Web Service eXperience Language (WSXL) was developed to reduce development
effort while building web applications for different distribution channels by re-use. Service-
based web applications specified using WSXL can easily be adapted to different
presentation scenarios.
WSXL is based on or closely collaborating with existing, widely-used web standards, such
as the SOAP protocol, the Web Services Description Language (WSDL), and the XForms
standard [63].
The WSXL specification [64]resembles the widely-used Model-View-Controller pattern, as
it separates presentation, data, and control in particular components. A WSXL application
consists “of one or more data and presentation components, together with a controller
component which binds them together and specifies their interrelated behaviour” [65].

• Base component: All types of WSXL components are derived from this component,
and therefore share basic operations specified within. I.e. live cycle operations, or
export operations.

• Presentation component: represents a complete user interface (e.g. an HTML page)
and all of the user interface elements. WSXL does not restrict the set of allowed UI
elements, nor provide a set of default UI elements. For each target platform that

D3.1 Report on user interface analysis

AALuis 26

shall be supported, one presentation component has to be defined, using UI
widgets that are supported by the particular platform.

• Data component: Contains all data stored by the web application, available to the
user interface. Data components may be bound to presentation components by
using control components, or external data sources.

• Control component: Manages binding between presentation and data components,
by invoking event handlers in order to synchronise changed data between
Presentation and Data component.

WSXL includes an “Adaption Description Language”, to control several aspects of the
automatically generated final user interfaces through so called adaption points. Such an
adaption point refers to an element in a data or presentation component via XPath [66] or
XQuery [67]. The adaption point specifies one of the three operations, “lookup”, “insert”, or
“replace”, to indicate that the operation is permitted on the UI or data element. This means
a third party developer may adapt the rendering of the element.
Level of abstraction
Although WSXL is designed for web services and their typical delivery channels (HTML
pages and Flash applets in web sites, portals, etc.), the level of abstraction is quite high.
By defining separate presentation components for each output toolkit and just binding
them to the underlying data components, theoretically every toolkit and therefore every
output modality is supported. The approach, however, does not really generate final user
interfaces automatically; a concrete user interface must rather be created manually for
each toolkit the web service shall support.
Adaptability
WSXL provides a powerful adaptability description framework, allowing in-depth
specification for both service providers as well as distributors. Parts of user interfaces may
be explicitly authorised for adaptation, and those parts may be adapted directly on code-
level while all the others stay closed. This concept was designed for adaptation to different
distribution channels inside the usage context of web services. Therefore no built-in
support for the automatic adaptation following environmental contexts, use cases, or user
preferences is provided, although it could easily be added by external toolkits.
Openness
The full WSXL specification of both the current language version and the former,
deprecated version is freely available from the developer's web page [92].
Status
WSXL was developed by IBM.
The first language version was published in October 2001; version 2 was published in April
2002. Version 2 is the latest version; no updates have been published since then by IBM.
The current development status is unknown.
Although the exact language specification is freely available, there exists no public
information about the use of WSXL in practice. The language specification provides
examples of WSXL implementations for two target toolkits: HTML and Adobe (former
Macromedia) Flash.

D3.1 Report on user interface analysis

AALuis 27

3.2.5 User Interface Extensible Mark-up Language (UsiXML)
The USer Interface eXtensible Mark-up Language (UsiXML) is an XML-based mark-up
language that can be used to define user interfaces in an abstract way, independent of
modalities. Its main goal is to reduce the effort necessary for generating user interfaces to
be used in multiple contexts of use.
UsiXML defines user interactions on four layers resembling transformational steps from
abstract to concrete user interfaces, based on the Cameleon reference framework [68]:
The layers are [69]:

• Tasks and concepts: Abstract task descriptions describe the tasks a system offers
to a user. They define all interactions possible, as well as objects manipulated. On
this layer, three types of models are defined:

o Task models: Contain tasks and task relationships.
o Domain models: Describe real-world concepts that tasks resemble from the

user’s point of view.
o Context models: Describe environmental settings that influence the

execution of a task. This includes user models that assign preferences to a
group of users, platform models that comprise capabilities of user interface
devices, and environment models that describe all external influences (e.g.
physical or psychological conditions).

• Abstract user interfaces: define user interactions in a modality-independent way,
based on an underlying task description. An abstract UI consists of abstract
interaction objects (AIO) that represent modality-independent forms of traditional UI
widgets. Each AIO is assigned one or more functionalities, including input, output,
navigation, and control functionalities.

• Concrete user interfaces: concretise abstract UIs to work with one specific
input/output modality. In summary, they define the look and feel of a certain user
interface, in a modality-dependent but toolkit-independent way. Concrete UIs are
composed of concrete interaction objects (CIO) that represent UI widgets. For
example, when using graphical user interfaces, widgets such as buttons, text
boxes, etc. are used as CIOs.

• Final user interfaces: are concrete UIs that are supposed to be run on a specific
platform, meaning they are platform- and toolkit-dependent.

To formalize the transformation steps necessary for conversion between two of the above-
mentioned abstraction layers, UsiXML proposes a graph-based transformation
specification [70].
This graph-based transformation logic uses a tree-based structure: The abstract task
description (the first abstraction layer) is used as root of the tree, the corresponding
abstract UI forms the second level, and on the concrete UI and final UI layers different
branches represent the various UIs for different modalities or platforms, respectively.
All of the four abstraction layers can be further decomposed into sub layers. This means
that transformations between two neighbouring layers include several transformation
steps. This way, transformations between any of the four layers can be realized by
composing multiple transformation steps and carrying them out on after the other.

Carrying out transformations is impossible without detailed mapping information,
encoding which elements of the source layer are to be transformed to which elements of

D3.1 Report on user interface analysis

AALuis 28

the target layer. This information is included in special rule sets. For example, for each UI
toolkit that should be supported (meaning that a concrete UI can be transformed to a final
UI for this toolkit), such a rule set must be provided from an external source.
Level of abstraction
Due to the layered structure of UsiXML, the language provides a high level of abstraction.
In theory, all modalities are supported since the first two abstraction layers, tasks and
abstract user interfaces, are modality-independent. In practice, there are two restrictions
concerning device-independence: First, UsiXML is currently designed to support only two
types of modalities, as stated in [93]: “Two modalities lie in the intended scope of USIXML:
graphical and auditory.” However, due to its structure the language should be quite easy to
extend to support additional modalities. Second, only target toolkits are supported that
provide a rule set for transformation of concrete UIs to final UIs in that toolkit.
Adaptability
Full adaptability of user interfaces defined in UsiXML is supported. Context models are
used to store information about user preferences, device capabilities, and environmental
settings, thus offering a complete framework to support automatic accessibility,
adaptability to contexts of use, and use-case awareness.
Openness
The full language specification, including documentation, examples, and tools, is freely
available from the UsiXML project web page.
Status
UsiXML was developed by a research group with members from several universities and
research organisations. The work on UsiXML began in 2004. The latest version 1.8 was
published in 2007; current status of development is unknown.
Several graphical editors for creating UsiXML documents were published, including
plugins for generating final user interfaces in various target toolkits. One of those editors is
GraphiXML [94], which supports XHTML, Mozilla XUL, and Java as target platforms. In
addition, several rendering engines for UsiXML documents are available, supporting
Adobe Flash and Open Laszlo, among others.
UsiXML is intended for use with only two modalities: Graphical and voice-based user
interfaces.

3.2.6 User Interface Mark-up Language (UIML)
UIML is a meta-language, not specifying concrete UI elements on its own, but providing a
framework for the definition of custom vocabularies that can then be used to create
generic user interface descriptions.
UIML’s main goal is helping UI developers in creating user interfaces that are sufficiently
generic to be used on different platforms, thus significantly reducing the effort in
developing multi-platform user interfaces. User interfaces defined using UIML are either
automatically transformed to different target languages (compiled), or interpreted and
rendered on target devices in real-time.
UIML separates a user interface into six parts. The six parts of a user interface description
resembled by those six questions build the basic structure of UIML. It is based on the
Meta-Interface Model (MIM) suggested by [71], which is defined in a hierarchical manner:
On the first level, MIM separates the user interface from underlying application logic and
data sources, and from the presentation on specific devices:

D3.1 Report on user interface analysis

AALuis 29

• Logic component: Encapsulates the business logic the underlying application
provides. It offers the user interface access to the application logic while hiding
implementation details such as method and variable names or the protocols used
for communication

• Presentation component: Includes information about the rendering of the final user
interface, hiding details such as widgets, attributes and event handling.

• Interface component: Allows the description of the communication between user
and application in a device- and application-independent way.

o Structure component: Defines parts that comprise the UI, allowing to group
UI elements together and structure them hierarchically.

o Content component: Defines the content of each part. This may include
content types such as text, image, sound, etc.

o Style component: Defines the exact presentation of each part, including
attributes such as font family, text size, colours, etc.

o Behaviour component: Defines for each part the events, conditions and
actions required when interacting with this part of the UI.

UIML is specified [72]as an XML-based meta-language, as it does not contain a
predefined set of XML tags that represent UI elements, neither concrete UI widgets nor
abstract interactor elements. Instead, it relies on external vocabularies that define a set of
abstract UI elements and their mapping to concrete, platform-dependent UI widgets. A
UIML document references such a vocabulary, objects defined in the vocabulary may then
be used in the UIML document.
Each vocabulary may have a different level of abstraction, depending on the number of
target platforms and modalities it shall support. It must define each target toolkit its
supports, and each element defined by the vocabulary should include a mapping to one
concrete element per toolkit that is targeted. In some cases, an abstract element may map
to different concrete elements, or to a certain combination of several concrete elements.
Vocabularies that are defined to support only one target toolkit, or a limited set of target
toolkits that are similar and use the same interaction modality, may be built less generic
than vocabularies that need to support a high number of modalities.
Level of abstraction
The level of abstraction is completely dependent on the vocabulary used by a UIML
definition. When using a vocabulary for only one target language, the user interface
elements used in UIML may be quite concrete. When defining a vocabulary that shall
support a variety of different target modalities, UI elements will automatically be more
generic. Unfortunately, the level of abstraction cannot automatically be retrieved from
UIML definitions or vocabularies, since even vocabularies covering only one target
language might be defined in a very generic way. In addition, the level of abstraction also
depends on the number of interface subcomponents that are bound to specific platforms:
Support for a certain platform might be very low-level even if the vocabulary supports that
platform if there is no specific structure, content and style elements defined in the UIML
document.
Adaptability

D3.1 Report on user interface analysis

AALuis 30

UIML provides the possibility to define different structures, style sheets, and contents as
part of one user interface description. This option can be used for reacting to user
preferences, contextual settings, use cases, etc. The mechanism of choosing one of the
definitions, however, is beyond the scope of the UIML specification and is left to compilers
and interpreters. Therefore UIML provides no built-in functionality for user interface
adaptation.
Openness
The current UIML language specification [95] as well as the previous one can be
downloaded for free from the web page of OASIS [96], the standardisation organisation
that is responsible for publication and further development of the UIML standard. In
addition, the specification states that it may be freely implemented by anyone. Previous
versions of the specification can be downloaded for free from the former UIML web
platform that is now discontinued [97].
Status
Development on UIML was started in 1997 at the Virginia Polytechnic Institute and State
University. To further develop the core language and additional tools, a spin-off
corporation called “Harmonia” was founded. The UIML standard has been adopted by the
Organization for the Advancement of Structured Information Standards (OASIS). The
OASIS UIML committee is now responsible for further development concerning the UIML
standard.
The first version of UIML was published in 1997, the language has been further developed
since then and refinement is still in progress. The latest version is 4.0which was published
as a final specification in 2009.
Many different UIML compilers and interpreters have been developed in the last 13years,
covering a variety of target language and toolkits. For some of those, several
implementations are available. Supported target languages and toolkits contain HTML,
Java, C++, .NTE, QT, Symbian, WML, VoiceXML, and others.
The above mentioned implementations cover at least four different platforms: Desktop
PCs, mobile devices, multimedia devices (TVs) etc., and speech-based systems.
However, there may be other implementations supporting additional platforms.

3.2.7 Dialog and Interface Specification Language (DISL)
The Dialog and Interface Specification Language (DISL) [73]is an extended subset of the
UIML language specification. It provides a modelling language for specifying dialog
models in an abstract way that can be used to generate user interfaces for multiple
modalities and platforms. DISL follows the approach of separation of control model and
dialog model. The control model contains all data that represents the application state,
while the dialog model is responsible for presentation and interaction.
The dialog model proposed by DISL contains three parts:

• Dialog flow: The central component. It controls the data flow inside the user
interface components. The dialog flow is a sequence of four steps that are repeated
periodically and are carried out by the two remaining components:
1. Generate a dialog
2. Present a dialog
3 Capture user interactions
4. Evaluate the interaction

D3.1 Report on user interface analysis

AALuis 31

• Presentation component: Responsible for steps 1 and 2 in the cyclic process
presented above. It depends on generic interfaces (compare abstract interfaces in
most other UIDLs) that describe the user interface to be generated in an abstract
way and are specified manually prior to the dialog flow process. They consist of
generic UI widgets which are modality-independent as they describe only basic
operations such as trigger, data input, data output, etc. At runtime, generic
interfaces are mapped to distinct modalities by mapping each generic widget to a
concrete widget. Finally the presentation component presents the generated
modality-specific user interfaces to the user using a target device.

• Interaction component: captures user interactions with the currently presented user
interface and processes them. All user input is collected from the different
modalities. Based on the widgets that delivered the user input, the generic widgets
on which they are based are tracked using reverse mappings. On the generic
interface level, properties of generic widgets can be set or events can be triggered,
according to the user input.

Step 4 in the cyclic dialog flow is executed by the behaviour controller: The events
triggered and properties set by the interaction component are passed on to the behaviour
resolver who manages the control model. The control model consists of content elements
which represent the current state of the user interface. The behaviour resolver reacts to
interactions captured by the interaction component of the dialog model by setting content
elements’ properties. Immediately after such an edit operation, it asks the dialog model to
refresh the UI presentation.
Level of abstraction
Due to the hierarchical structure and the separation of data and presentation, the level of
abstraction is quite high. Every target platform and modality is supported if adequate
mapping rules are provided.
Adaptability
Adaptability is one of the key issues of DISL. The language is designed to support
switching of end devices on the fly; therefore adaptability to different use cases and
environmental contexts is a built-in core component. The specification of user preferences
is not provided by the language framework, although adaptability to such profiles could
easily be accomplished by using the built-in adaptability mechanisms.
Openness
Besides scientific papers, no detailed information about the DISL specification is available.
Status
The DISL language was developed by a research group formed of members of the
Paderborn and Kassel Universities in Germany. It was proposed in a research paper
published in 2006, the current development status is unknown.
No information about systems running DISL on specific platforms is available.

3.2.8 Model-based Language for Interactive Applications (Maria XML)
MARIA stands for Model-based lAnguage foR Interactive Applications, an XML-based user
interaction description language. It mainly focuses on the definition of user interfaces used
to access web service functionalities. The language follows a semi-automatic approach for
generation of user interfaces: Basic final user interfaces are generated automatically from

D3.1 Report on user interface analysis

AALuis 32

abstract user interface descriptions, but developers are given the possibility to refine these
concrete interfaces.
MARIA XML introduces two abstraction layers: User interfaces are defined on an abstract
level and on a concrete level [34]. In addition, data models are defined that represent the
underlying data structure, as well as event models which represent the underlying
application logic.

• Abstract user interfaces: Are independent of modality and focus on interactions
between the user and the web service. They consist of abstract interactors which
are grouped together and interconnected through relations.

• Concrete user interfaces: Are modality and platform specific, but toolkit
independent. Each interactor on the abstract level is mapped to an element of the
concrete user interface, corresponding to typical user interface widgets (e.g. button,
text box, list box). The mapping of abstract interactors to concrete elements
depends on the characteristics of the target platform.

A rule set defines mappings, either between abstract and concrete interactor elements, or
between concrete elements and toolkit-specific widgets. There a two ways of specifying
transformation rules [74]:

1) Rule sets for general user are defined once and can be reused for several
documents. A mapping for each element in the abstract layer must be provided.

2) Developers may refine automatically generated user interfaces, by editing
predefined mappings at document instance level. These edited rules are used only
once for a certain document, or a subset thereof.

The usual information flow is as follows:
1) An abstract user interface is defined based on the web service’s WSDL description.
2) The abstract user interface is transformed to multiple concrete user interfaces, one

for each target platform to be supported.
3) Each concrete user interface is transformed to multiple implementations, one for

each UI toolkit to be supported.
4) The final toolkit-specific implementations are executed on the target devices.

Level of abstraction
Due to the structural distinction of task descriptions (through WSDL), abstract and
concrete user interfaces and final implementations, the level of abstraction is quite high. In
theory, every modality and every target toolkit is supported, if adequate rule sets have
been defined.
Adaptability
Two potential mechanisms for UI adaptation can be identified: MARIA XML provides the
possibility to influence the UI generation by overriding mapping rules in certain cases. This
can be used to adapt the generated user interface according to different external factors;
MARIA XML however does not offer automatic adaptation mechanisms. Also no language
constructs are provided to store user preferences or device profiles.
Alternatively, the mechanism of migratory user interfaces already implements an automatic
adaptation based on contexts of use, similar approaches could be used to achieve
adaptation based on user preferences and use cases.

D3.1 Report on user interface analysis

AALuis 33

Openness
MARIA XML was developed as part of the MARIAE (MARIA Environment) tool which can
be downloaded for free after registration from the project web page [98], including source
code. The full language specification however is not available online.
Status
The MARIA XML language and the MARIAE tool were developed by HIIS Laboratory, a
research group focusing on human-computer interaction of the Italian National Research
Council (CNR). No detailed information is available about the MARIA XML language itself;
however the first version of the MARIA tool was published in 2010. The latest version1.3.1
was published in August 2011. In contrast to most other UIDLs, it is a relatively young
development, although MARIA XML is based on the discontinued TERESA XML language
which was developed by the same research group.
The only publicly available use of MARIA XML is the MARIAE (MARIA Environment) tool
[98] which helps in developing multimodal user interfaces and applications based on web
services. It is unclear how many working rule sets for transforming concrete user
interfaces to toolkit-specific implementations exist.
MARIAE includes example scenarios that demonstrate the generation of concrete user
interfaces for at least three different platforms: desktop PCs, mobile devices, and voice-
based systems.

3.2.9 Voice XML
VoiceXML is an XML-based mark-up language used to specify user interaction with
speech-based systems. The language is standardized by the World Wide Web Consortium
(W3C). VoiceXML documents allow the specification of speech-based interactions
between a system and its user. Those interactions contain data output from the system to
the user, and data input requested by the system from the user.
According to [77], VoiceXML interactions may be composed by fragments of the following
types:

• Output of synthetic speech prompts

• Output of predefined audio content

• Input and automatic recognition of spoken phrases

• Input and automatic recognition of DTMF key presses
In addition, VoiceXML provides mechanisms for recording speech input, specifying
telephony call control detail (e.g., call transfer and hang-up) and controlling the dialog flow.
The latter is especially important compared to user interfaces based on other interaction
modalities: Using speech-based interfaces, exactly one type of information can be output
to the user or requested from the user at a time, in contrast to graphical user interfaces.
A VoiceXML application consists of several VoiceXML documents, each defining one
dialog. A dialog consists of several input and output interactions that are carried out. Each
document specifies the dialog that shall be carried out next, by referencing the URL of the
document containing that dialog.
Dialogs are composed of forms and menus. A menu presents the user with several options
to choose from and specifies which dialog to carry on with on each option. A form defines
several interactions, each consisting of a prompt that is output to the user, the expected
data requested from the user, and rules for evaluating the input data.

D3.1 Report on user interface analysis

AALuis 34

Level of abstraction
VoiceXML follows a quite generic approach by specifying interactions between user and
system as data items that are sent between the two communication partners. VoiceXML
however focuses especially on the exchange of audio content and includes functionality
only for processing speech and spoken phrases; therefore the overall level of abstraction
is rather low.
Adaptability
VoiceXML does not provide mechanisms to store users’ preferences and automatically
adapt dialogs based on these preferences, or to react to environmental factors. The issue
of different user interfaces on different devices does not apply to VoiceXML, since the
language focuses on speech-based interfaces that are presented in the course of one
telephone call using exactly one device.
Status
The full specification of all language versions of VoiceXML was published as
recommendation by the W3C and is available online.
Organizational background:
VoiceXML was originally developed by the VoiceXML forum2, a Consortium founded by
AT&T, IBM, Lucent and Motorola. The World Wide Web Consortium (W3C) standardized
VoiceXML and currently is responsible for further development of the language. The latest
version 2.1 [31] was published in 2007. The main goal of the major 2.0 version published
in 2004 was to consolidate and standardize various adaptations of the 1.0 version made
by third party developers. Version 3.0 is currently available as public draft.
VoiceXML is used by many implementations of automatic telephony systems on the World
Wide Web. VoiceXML is designed solely to support speech-based user interfaces.

3.2.10 Extensible Application Mark-up Language (XAML)
The eXtensible Application Mark-up Language (XAML) is a declarative mark-up language
based on XML developed by Microsoft. Its main use is the specification of user interfaces
as part of the Windows Presentation Foundation (WPF). Another area of use for XAML is
the definition of user interfaces for web applications that build upon the Microsoft
Silverlight framework.
[75] gives an overview of the specification of XAML for its main use case: as user interface
description language for the WPF framework. The language follows an XML-based
structure with custom elements and attributes. XAML is closely coupled with the language
framework that uses XAML as UIDL (in most cases .NET).
In general, all classes that are available in the underlying programming language can be
used as elements, this includes not only classes that represent user interface components
but even custom classes defined by developers inside the application. Properties of those
classes can be referenced as attributes. Each XML element defined in a XAML document
declares an instance of the class referenced by the element. This concept is mainly used
to declare user interface components and their hierarchy; however it can also be applied
to non-visual elements that are references by UI components.

2http://www.voicexml.org/

D3.1 Report on user interface analysis

AALuis 35

XAML is usually compiled to binary code, integrated into .NET applications and executed
on end devices through the .NET framework. This ensures that no compatibility or
rendering problems can occur. At the same time however it reduces the amount of
supported end devices to those that run the .NET framework. The only exception of this
rule is the use of XAML in Silverlight web applications. In this case, XAML code can be
sent to the browser and is interpreted at client side by the Silverlight browser plug-in.
Level of abstraction
XAML relies on the user interface components specified by the underlying language
framework. Since it is mainly used in combination with either WPF or Silverlight and those
framework define rather concrete UI widgets (such as button, textbox etc.) that are
modality- and toolkit-dependent, the level of abstraction is quite low. Also the
implementation details indicate a low abstraction level, since user interfaces specified
using XAML can only be rendered on devices supporting the.NET toolkit.
Adaptability
Nearly all attributes of XAML user interface components can be bound to variables and
therefore changed at runtime instead of setting them explicitly before compiling. This
concept provides the basis for adaptation of existing user interfaces XAML however does
not provide mechanisms to store users' preferences or to react to environmental factors.
The issue of different user interfaces on different devices is not crucial to XAML, since in
most cases a separate user interface for each type of device needs to be manually
created anyway.
Openness
XAML was published by Microsoft as an open standard; the full specification is available
online.
Status
XAML is developed by Microsoft. A separate XAML version is released with each new
version of the .NET framework as well as with each Silverlight version. The latest versions
are .NET 4.5 (published only as developer preview in 2011) and Silverlight 5 (published as
release candidate in 2011). It can be assumed that XAML will be further developed with
newer versions of .NET.
Support for XAML is built into WPF and Silverlight, as mentioned above. Beside those two
platforms, there exists the Mono project that aims at developing an open source, cross
platform implementation of the .NET framework. The Olive project [99] provides add-on
libraries to the Mono framework, including libraries that add XAML support. The Moonlight
project [100] aims at developing an open source implementation of Silverlight as part of
Mono.
Both .NET and Mono are available for desktop PC as well as mobile platforms. In addition,
XAML supports web-based platforms through Silverlight.

3.2.11 XML User Interface Language (XUL)
The XML User interface Language (XUL) is a user interface description language
developed by Mozilla. It is based on XML and not compiled but interpreted at runtime by a
special rendering engine.
According to [76], XUL separates the description of user interface objects and of these
objects’ styles. Similar to HTML, in XUL user interfaces are defined in a hierarchical tree-
like structure, as some objects may contain others. Since the user interface description is

D3.1 Report on user interface analysis

AALuis 36

not compiled but interpreted, the rendering engine builds a document object model (DOM)
and hierarchically renders its elements.
XUL provides a predefined set of user interface widgets. XUL supports only graphical user
interfaces, which allows the set of UI widgets and their available attributes to be relatively
small and concrete. In addition, HTML elements can even be used as part of XUL
documents just as native XUL user interface widgets. This can be useful for referencing
elements XUL does not provide, such as tables for creating advanced layouts, and for
embedding Java applets and similar external content.
The application logic is defined in JavaScript documents that are referenced in the XUL
document. Each XUL user interface widget provides several event listeners that can be
assigned methods defined in the referenced JavaScript. Alternatively, such method
invoking commands can be put in special command objects, and these commands can
then be referenced inside an event handler instead of calling JavaScript methods directly.
Level of abstraction
XUL focuses on graphical user interfaces and provides widgets that can only be used in
graphical environments; therefore the level of abstraction must be defined as low.
Adaptability
XUL does not integrate mechanisms for defining user preferences or contexts of use,
therefore XUL-based user interfaces cannot automatically adapt to those settings,
although adaptation could be integrated using the flexible CSS styling system that allows
redesign of all user interface elements at runtime.
XUL user interfaces automatically adapt to different hardware capabilities such as screen
resolutions. However this applies only to simple dynamic resizing and positioning of
widgets, since XUL is restricted only to graphical user interfaces. In addition, XUL does not
support the automatic display of different user interfaces (accomplishing different tasks) on
different devices, since there is no way to define the type of tasks each widget implements.
Openness
The full specification is available at the Mozilla project web page.
Status
XUL is developed by the Mozilla open source community. XUL is used as user interface
description languages by all applications published by Mozilla, the most common ones
being the Firefox web browser and the Thunderbird E-Mail client. There are some third-
party applications however which also make use of the XUL language; among them the
movie/theatre project management tool CeltX and the instant messaging client Instantbird.
In addition, the XUL language is used to define user interfaces of Firefox and Thunderbird
add-ons. Finally, XUL can also be used to develop applets to be embedded into web
pages [101]. This approach however is not very common among web developers, mainly
due to the restricted browser support (XUL applets can only be run in Mozilla-based
Currently there is only one XUL interpreter available, namely the Gecko rendering engine
developed by Mozilla. This rendering engine is also used in Mozilla-based browsers to
render HTML content. Standalone XUL application are interpreted and rendered by the
XULRunner engine, which internally uses the Gecko rendering engine.
XUL was developed solely to support graphical user interfaces.

D3.1 Report on user interface analysis

AALuis 37

3.3 Results of the UIDL Analysis
All criteria for the suitability of the UIDLs in the AALuis context were assessed. Table 3
gives an overview of the assessment results. Single criteria were rated as inadequate (--),
somewhat inadequate (-), indifferent (0), somewhat adequate (+), adequate (++), or
unknown (?). Each + was given a rating of 1, each - was given a rating of -1. All UIDLs
with a positive total rating were ranked and all ranked UIDLs shall be considered for
application in the further specification process of the AALuis architecture.

Criterion URC XIML XISL WSXL UsiXML UIML DISL MariaXML VoiceXML XAML XUL

Abstraction - + 0 + - 0 ++ ++ -- -- --

Adaptability -- ++ -- + ++ - ++ - -- 0 -

Openness -- ++ + ++ ++ ++ ? ++ ++ ++ ++

Status ++ -- 0 - + ++ ? ++ + ++ ++

Total rating -3 3 -1 3 4 3 4 5 -1 2 1

Ranking N/A 4 N/A 4 2 4 2 1 N/A 7 N/A

Table 3: UIDL Assessment
Assessment of the suitability of the analyzed UIDLs in the AALuis context.

D3.1 Report on user interface analysis

AALuis 38

4 Enabling Freedom of Choice of User Interfaces
One of the goals of the AALuis project is that every person can use his preferred kind of
user interface for any connected service. One precondition to enable freedom of choice of
user interfaces at the user’s site is to provide user interfaces as consistent as possible
across devices taking into account user needs and preferences as well as modalities of
the devices. In this section we present attributes and techniques of consistent user
interfaces and the necessary adaptation processes in the background.

4.1 Consistency of Multiple User Interfaces
4.1.1 Three-dimensional model of interface consistency
Consistency is not only an issue when designing for various devices, the principle of
consistency also applies for user interfaces for one device and one application. Every set
of usability guidelines and heuristics strives for consistency (see section 2.1.3 or e.g. the
influential publications of Nielsen 1994 [29] and Shneiderman 1997 [45]). For a better
understanding of the concept of consistency for websites Ozok and Salvendy (2000) [32]
classified it into three types and described the so called three-dimensional model of
interface consistency:

• Conceptual consistency (language, stereotypes, task concept, skill transfer,
output consistency, hierarchical order of concept, etc.): Leaving something to users'
interpretation due to lack of explicitness leads to a wrong mental model of the user.

• Communicational consistency (moving between screens, menus, user
conventions, between-task consistency, distinction of tasks and objects, etc.): It
deals with how the user interacts with the user interfaces and whether the means of
interaction are consistent for fulfilling the same or similar tasks.

• Physical consistency (colour, size, shape, location, spacing, symbols, etc.): It
summarizes the consistency of the visual appearance of the user interface and
indicates that the features are supposed to be consistent with the users’ mental
model.

4.1.2 Multiple User Interfaces and Consistency
Multiple user interfaces (MUI) provide different views of the same information and
coordinate the services available to users from different computing platforms (Seffah and
Javahery 2004 [44]). Pyla et al. (2006) [37] questioned on which level (UI, Task or Data)
consistency for MUIs should apply and argued that consistency in UI design should be
followed only when it helps reduce the cost of task disconnects (the gap during the change
of the devices) and helps support seamless task migration. In a follow-up study they found
several problems of multi-device interaction (Pyla et al. 2009 [38]):

• Dropping the use of multiple devices in favour of a single one

• High costs of remembering file and data locations

• Fear of making errors due to overheads associated with the migration of information
across devices

• Keeping track of version information
To overcome these problems they built a prototype for engineering software for various
devices taking into account these issues and evaluated it successfully. So it is more
important to achieve consistency at the mental model and data model level and not just at

D3.1 Report on user interface analysis

AALuis 39

the interaction level. MUIs can thus support different types of look-and-feel and offer
different interaction styles. However, these have to take into account the constraints of
each computing platform while maintaining the following aspects:
Cross-platform consistency [44]: All user preferences must be preserved across the
various platforms.
Example: If the end-user has specified a particular access mechanism using one user
interface, it should be used on all user interfaces.
Abstraction and Migration [37][44]: All data and services should be the same across
platforms supporting the same level of interactivity (even if not all data and services are
shown for all platforms) before interaction can proceed seamlessly on various devices.
Example: a product listing might include only the best-selling items on a handheld device,
with the rest relegated to a secondary “more products” page. For an office desktop, the
product list includes all the items for sale.
Uniformity [44]: A MUI should offer support for the same functionality and feedback even
if certain features or variations are eliminated on some platforms.
Example: An airline reservation system presents choosing a flight and buying the ticket in
two separate steps. This separation should be preserved on all versions instead of
unifying the two tasks into a single step on a simplified version of the interface.
Intra-platform consistency [37][44]: It is not necessary for all features to be made
available on all platforms. The application developed for each platform must stay
consistent with design guidelines for that particular platform.
Example: A PDA interface could eliminate images or it might show them in black and
white. Similarly, text can be abbreviated on a small display, although it should be possible
to retrieve the full text through a standardized command.
Holistic Interaction Design [37]: All platforms need to be considered together and
functionality needs to be distributed or replicated according to the affordances and
contexts of use of each device.
User awareness of trade-off [44]: It would be acceptable to have a simplified version of a
program that excludes certain less-important features (Example: such as specifying a
seating preference) that are present in the more advanced version. Missing these features
is a trade-off that the user would be willing to make in return for the benefits of being able
to use the system in mobile contexts.

4.1.3 Usability and UX Assessment of MUIs

4.1.3.1 Taxonomy of usability factors for MUIs (Öquist et al. 2004[31])

It is impossible to account for all factors that affect usability in mobile contexts, but by
monitoring a few of them it should be possible to make some well-founded predictions
about usability. Öquist et al. singled out four factors that have a large impact on mobile
usability:

• The first one is portability, which embraces in which contexts of use a certain
device or interface may be usable. The values plural (usage of several devices),
dual (usage of two devices) and single (focus on one device) are possible.

D3.1 Report on user interface analysis

AALuis 40

• The second factor is attentiveness, which is based on how much attention a
certain interface can take for granted under various circumstances. The values
primary (main focus onto device), secondary (main focus onto primary task but
interaction possible by other modality) and minimal (main focus onto surroundings)
are possible.

• The third factor is manageability, which is determined by how different interfaces
can be handled by the user. Different levels of manageability are defined according
to the stability that is achieved: thus there is two-handed stable (desktop
environment), two-handed unstable (mobile device held in one hand and operated
with the other hand) or one-handed unbalanced manageability.

• The last factor is learnability, which has to do with how easily an interface can be
learned. Three design paradigms can be distinguished: technological, metaphorical,
and idiomatic. The technology paradigm builds on understanding, whereas the
metaphoric paradigm is based on intuition, and the idiomatic paradigm is based on
providing a swift learning environment to accomplish tasks.

Context of use Factors of usability

Portability Attentiveness Manageability Learnability

Stationary Plural Primary Stable Technological

Seated Plural Primary Stable Metaphoric

Standing Dual Secondary Unstable Metaphoric

Moving Single Minimal Unbalanced Idiomatic

Table 4: MUI Usability
Taxonomy of usability factors for MUIs (Öquist et al. 2004 [31])

This usability assessment method can be extended to assess usability over other MUIs as
well. The most straightforward way of doing so is to add additional contexts of use,
distinguish the usability factors that are pertinent to them, and create new indexical
templates for each contexts of use to match against [31].

4.1.3.2 Multi-Device UI analysis grid (Denis and Karsenty 2004 [6])

It is important for users to be able to easily transfer and adapt their knowledge of a service
and task representation from one device onto another. Due to different design constraints
between devices certain obstacles arise. Consistency of design should be promoted when
possible while certain inconsistencies due to operational constraints, utility and efficiency
criteria need to be allowed. The functionality should even help users to understand the
limitations imposed by the devices [6]. Table 5 depicts the accordant design principles.

Design Principle Dimensions of inter-usability

Knowledge Continuity Task Continuity

Inter-device consistency

Transparency

Dialogue adaptability

Table 5: Multi device analysis grid
Multi-device systems analysis grid (Denis and Karsenty 2004 [6])

D3.1 Report on user interface analysis

AALuis 41

Inter-device consistency – Factors:
Perceptual consistency: When possible, the appearance and structure of the information
should be similar on different devices. With graphical interfaces, this similarity applies to
objects and the spatial organisation of information. With a voice interface, similarity applies
to the order in which the information is presented – this order should be consistent with the
order in the visual interface(s).
Lexical consistency: The objects of the user interface should have the same label across
devices.
Syntactical consistency: To attain a given goal, the same operations should be performed
across devices. It is possible to modify a task slightly for a different device in order to make
it more efficiently adapted to that device.
Semantic consistency: Services should be similar across devices. In other words, the
partition of data and function should be redundant between devices. In the same way, the
effect of the operations should be as similar as possible across devices. To ensure task
continuity, the state of the data in the last operations performed by the user should be
reflected on all devices. Moreover, so as to recover the context of their tasks, users should
be able to recover the state of their activity and/or the history of their last operations.
Transparency:
Transparency can be defined as a property of the man-machine dialogue allowing users to
construct an accurate representation of the system so as to interact efficiently with it. This
property can be based on guidance methods appropriate to the user’s expertise level and
system functionalities. Adapting transparency to familiar devices and procedures requires
the construction of a centralised user model, able to be updated and consulted from each
device.
Adaptability:
System transparency is a dynamic notion since it depends on the user’s representation of
the system, which itself evolves in time and varies with the context of use. Adaptability is
the process to adapt a multi-device user interface to the user’s model. For knowledge
continuity, adaptation mainly involves varying the guidance level and amount of
explanation of how the system works and the service limits for a given device. For task
continuity, system adaptation can involve the contextualisation of data, particularly by
reminding the user of the actions that originated the current state of the data.

4.1.3.3 Initial Framework for cross-platform UX (Wäljas et al. 2010 [51])

Based on the work of Denis and Karsenty (2004) [6] and other prior work Wäljas et al.
(2010) [51] constructed an initial framework for cross-platform service UX. The framework
conceptualizes a structured set of distinct, designable characteristics of cross-platform
systems that essentially influence UX, and the respective main elements of cross-platform
service user experience (see Figure 5).

D3.1 Report on user interface analysis

AALuis 42

Figure 5: Cross platform service UX
Initial Framework for cross-platform service UX (Wäljas et al. 2010 [51])

Composition:
Component role allocation defines how users perceive the purpose of each system
component. Users allocate roles through their use practices: task-based and situation-
based role allocation can be distinguished. Task-based allocation means the use of
distinct platforms for distinct tasks, whereas situation-based allocation means using
distinct devices for the same tasks, but in different situations.
Distribution of functionality means that not every task or content respectively needs to be
included in every device. For example, if it is known that a specific device is only used in
certain kinds of situations, it may be justified to limit its functionality to support only those
situations.
Functional modularity should be maintained to some degree, even though devices in a
system are specialised. The degree of functional modularity determines how each platform
adapts to use in different situations.
Continuity:
Cross-platform transitions include interactions where the user switches from using one
device to using another.
Appropriate task migration: In multichanneling, supporting repetition of tasks is in focus.
The same content and functionality needs to be available on all platforms that are used for
carrying out the task. With cross media systems, a logical chain of tasks needs to be
supported.
Synchronization of actions and content is especially important for mutlichanneling: Users
expect to see the exact same content and state of actions when migrating their tasks from
one platform to another.
Consistency:
The challenges regarding consistency lie in the heterogeneity and constraints of different
technologies. Consistency can be leveraged on different levels to promote a coherent
system image (see above). Coherent user experience is the ultimate goal of consistent

D3.1 Report on user interface analysis

AALuis 43

cross-platform service design. System coherence summarizes the experience of
interacting with a service through multiple devices.

4.1.4 Design Frameworks for consistent MUIs
Uniform (Using Novel Interfaces for Operating Remotes that Match) is a system that
automatically generates consistent interfaces from potentially inconsistent interface
specifications (Nichols et al. 2006[28]). Finding particular functions can be a challenge,
because appliances often organize their features differently. This paper presents a system,
called Uniform, which approaches this problem by automatically generating remote control
interfaces that take into account previous interfaces that the user has seen during the
generation process. The similarity information allows the interface generator to use the
same type of controls for similar functions, place similar functions so that they can be
found with the same navigation steps, and create interfaces that have a similar visual
appearance
Jelly is a UI design environment for designing cross-device UIs manually: to create UIs for
different computing platforms and toolkits inside one design environment which has the
ability to share and edit parts of UIs across devices (Meskens et al. 2010[24]).
GUIDE2ux is a UI design environment implemented in Jelly that (i) identifies and shows
usability problems automatically and (ii) facilitates designers to verify their designs on the
target device. GUIDE2ux wants to make design standards more accessible for designers
and help them to improve and test the user experience of their designs (Meskens et al.
2011 [25]).

D3.1 Report on user interface analysis

AALuis 44

References
[1] Apted, T., J. Kay and A. Quigley (2006). Tabletop sharing of digital photographs for

the elderly. Paper presented at the meeting of the CHI '06: Proceedings of the
SIGCHI conference on Human Factors in computing systems, New York, NY, USA.

[2] Becker, S. A. (2004). A study of web usability for older adults seeking online health
resources. ACM Trans. Comput.-Hum. Interact. 11 (4): 387--406.

[3] Bhachu, A. S., N. Hine and J. Arnott (2008). Technology devices for older adults to
aid self management of chronic health conditions. In Proceedings of the 10th
international ACM SIGACCESS conference on Computers and accessibility, New
York, NY, USA.

[4] Chaparro, A., M. Bohan, J. Fernandez, S. D. Choi and B. Kattel (1999). The impact
of age on computer input device use: Psychophysical and physiological measures.
Int. 1. Industrial. Ergonomics 24,503-513.

[5] Chisnell, et al. (2006). New Heuristics for Understanding Older Adults as Web
Users. Technical Communication, 53, Society for Technical Communication, 39-59.

[6] Denis, C. and Karsenty, L. (2004). Inter-Usability of Multi-Device Systems – A
Conceptual Framework, in Multiple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces (Eds. A. Seffah and H. Javahery), John Wiley &
Sons, Ltd, Chichester, UK, 373-385

[7] Eurostat (2008). Ageing characterises the demographic perspectives of the
European societies, http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-
08-072/EN/KS-SF-08-072-EN.PDF
(26-01-2011)

[8] Greenstein, J.S. and L.Y. Arnaut (1988). Input Devices, in Handbook of Human-
Computer Interaction, M elander, Editor. 1988, North Holland: Amsterdam . H

[9] Greil, H., Voigt, A., Scheffler, C. (2008). Optimierung der ergonomischen
Eigenschaften von Produkten für ältere Arbeitnehmerinnen und Arbeitnehmer–
Anthropometrie. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin

[10] Guerreiro, T., P. Lagoá, H. Nicolau, P. Santana and J. Jorge (2008). Mobile text-
entry models for people with disabilities. Paper presented at the meeting of the
ECCE '08: Proceedings of the 15th European conference on Cognitive
ergonomics, New York, NY, USA.

[11] Häikiö, J., Wallin, A., Isomursu, M., Ailisto, H., Matinmikko, T., & Huomo, T.
(2007). Touch-based user interface for elderly users. Proceedings of the 9th
international conference on Human computer interaction with mobile devices and
services (pp. 289–296).

[12] Hawthorn, D. (2000). Possible implications of ageing for interface designers.
Interacting withComputers, 12:507–528.

[13] Holzinger, A., Stickel, C., Fassold, M., & Ebner, M. (2009). Seeing the System
through the End Users ’ Eyes�: Shadow Expert Technique for Evaluating the
Consistency of a Learning Management System. HCI and Usability for e-Inclusion
(pp. 178–192). Springer.

[14] Hollinworth N. (2009). Improving Computer Interaction for Older Adults.
SIGACCESS Newsletter (93), Jan 2009:1117

D3.1 Report on user interface analysis

AALuis 45

[15] Iglesias, R., Gomez de Segura, N., and Iturburu, M. (2009). The elderly interacting
with a digital agenda through an RFID pen and a touch screen. In Proceedings of
the 1st ACM SIGMM international Workshop on Media Studies and
Implementations that Help Improving Access To Disabled Users

[16] Jacko, J., Emery, V.K., Edwards, P.J., Ashok, M., Barnard, L., Kongnakorn, T.,
Moloney, K.P., Sainfort, F. (2004). Effects of multimodal feedback on older adults’
task performance given varying levels of computer experience. Behaviour &
Information Technology, 23(4):247–264.

[17] Jin, Z. X., T. Plocher and L. Kiff (2007). Touch Screen User Interfaces for Older
Adults: Button Size and Spacing, Universal Access in Human Computer
Interaction. Coping with Diversity, Springer, Berlin/Heidelberg, pp 933-941.

[18] Kurniawan, S. and P. Zaphiris (2005). Research-derived web design guidelines for
older people. Paper presented at the meeting of the Assets '05: Proceedings of
the 7th international ACM SIGACCESS conference on Computers and
accessibility, New York, NY, USA.

[19] Lee, C.-F. and C.-C. Kuo (2007). Difficulties on Small-Touch-Screens for Various
Ages. Universal Acess in Human Computer Interaction. Coping with Diversity:
968--974.

[20] Lepicard, G. and N. Vigouroux (2010a). Influence of age and interaction
complexity on touch screen. 12th IEEE International Conference on e-Health
Networking Applications and Services (Healthcom) (Lyon, July 1-3, 2010).

[21] Lepicard, G. and N. Vigouroux (2010b). Touch Screen User Interfaces for Older
subjects Effect of the targets number and the two hands use. International
Conference on Computers Helping People with Special Needs (Vienna, July 14-
16, 2010).

[22] Lorenz, A., D. Mielke, R. Oppermann and L. Zahl (2007). Personalized mobile
health monitoring for elderly. Paper presented at the meeting of the MobileHCI '07:
Proceedings of the 9th international conference on Human computer interaction
with mobile devices and services, New York, NY, USA.

[23] Maguire, M. C. (1999). A review of user-interface design guidelines for public
information kiosk systems. Int. J. Hum.-Comput. Stud. 50, 3 (March 1999), 263-
286.

[24] Meskens, J., Luyten, K., & Coninx, K. (2010). Jelly: A multi-device design
environment for managing consistency across devices. Proceedings of the 2010
International Conference on Advanced Visual Interfaces (pp. 289-296)

[25] Meskens, J., Loskyll, M., Seißler, M., Luyten, K., Coninx, K., & Meixner, G. (2011).
GUIDE2ux: a GUI design environment for enhancing the user experience.
Proceedings of the 3rd ACM SIGCHI symposium on Engineering interactive
computing systems (pp. 137-142)

[26] Moffatt, K. A., McGrenere, J. (2007), Slipping and drifting: using older users to
uncover pen-based target acquisition difficulties, Proceedings of the 9th
international ACM SIGACCESS conference on Computers and accessibility

[27] Moffatt, A. K., Yuen, S., McGrenere, J. (2008), Hover or tap?: supporting pen-
based menu navigation for older adults, Proceedings of the 10th international ACM
SIGACCESS conference on Computers and accessibility

D3.1 Report on user interface analysis

AALuis 46

[28] Nichols, J., Myers, B. A., & Rothrock, B. (2006). UNIFORM: automatically
generating consistent remote control user interfaces. Proceedings of the SIGCHI
conference on Human Factors in computing systems (pp. 611–620). ACM.

[29] Nielsen, J. (1994). Heuristic evaluation. In Nielsen, J., and Mack, R.L. (Eds.),
Usability Inspection Methods, John Wiley & Sons, New York, NY

[30] Norman, D. A. 2010. The way I see it: Natural user interfaces are not natural.
interactions 17, 3 (May. 2010), 6-10.

[31] Öquist, G., Goldstein, M. and Chincholle, D. (2004). Assessing Usability across
Multiple User Interfaces, in Multiple User Interfaces: Cross-Platform Applications
and Context-Aware Interfaces (Eds. A. Seffah and H. Javahery), John Wiley &
Sons, Ltd, Chichester, UK, 325-349.

[32] Ozok, A. A., Salvendy, G. (2000). Measuring consistency of web page design and
its effects on performance and satisfaction. Ergonomics 43(4), 443–460.

[33] Parhi, P., Karlson, A. K., Bederson, B. B. (2006)Target size study for one-handed
thumb use on small touchscreen devices, Proceedings of the 8th conference on
Human-computer interaction with mobile devices and services

[34] Park, Y. S., Han, S. H., Park, J., Cho, Y. (2008). Touch key design for target
selection on a mobile phone, Proceedings of the 10th international conference on
Human computer interaction with mobile devices and services

[35] Perry, K. P., Hourcade, J. P. (2008), Evaluating one handed thumb tapping on
mobile touchscreen devices, Proceedings of graphics interface

[36] Potter, R. L., Weldon, L. J., Shneiderman, B. (1988), Improving the accuracy of
touch screens: an experimental evaluation of three strategies, Proceedings of the
SIGCHI conference on Human factors in computing systems, 27-32.

[37] Pyla, P. S., Tungare, M., & Pérez-Quinones, M. (2006). Multiple user interfaces:
Why consistency is not everything, and seamless task migration is key.
Proceedings of the CHI 2006 workshop on the many faces of consistency in cross-
platform design (pp. 1-4)

[38] Pyla, P. S., Tungare, M., Holman, J., & Pérez-Quiñones, M. (2009). Continuous
user interfaces for seamless task migration. Human-Computer Interaction.
Ambient, Ubiquitous and Intelligent Interaction (pp. 77–85). Springer.

[39] Rajala, T., Lahtinen, Y., and Paunio, P. Suurten kaupunkien 2. RAVA-utkimus.
Vanhuksien toimintakyky ja avun tarve.Suomen kuntaliitto, 2001. (in Finnish)

[40] Roudaut, A. (2009). Visualization and interaction techniques for mobile devices. In
Proceedings of the 27th International Conference on Human Factors in Computing
Systems, CHI 2009, Extended Abstracts Volume, Boston, MA, USA, April 4-9,
2009, ACM (2009) 3153–3156

[41] Saffer, D. (2008). Designing Gestural Interfaces, OReilly, Cambridge.
[42] Schedlbauer, M. (2007). Effects of Key Size and Spacing on the Completion Time

and Accuracy of Input Tasks on Soft Keypads Using Trackball and Touch Input.
Human Factors and Ergonomics Society Annual Meeting Proceedings 51: 429-
433(5).

[43] Sears, A. (1991). Improving touchscreen keyboards: design issues and a
comparison with other devices. Interacting with Computers 3 (3): 253 - 269.

D3.1 Report on user interface analysis

AALuis 47

[44] Seffah, A. and Javahery, H. (2004) Multiple User Interfaces: Cross-Platform
Applications and Context-Aware Interfaces, in Multiple User Interfaces: Cross-
Platform Applications and Context-Aware Interfaces (Eds. A. Seffah and H.
Javahery), John Wiley & Sons, Ltd, Chichester, UK, 11-26

[45] Shneiderman, B. (1997). Designing the User Interface. Strategies for effective
Human-Computer Interaction, 3rd edn. Addison-Wesley, Reading

[46] Stößel, C. (2009). Familiarity as a factor in designing finger gestures for elderly
users. In Proceedings of the 11th International Conference on Human-Computer
Interaction with Mobile Devices and Services (MobileHCI '09). ACM.

[47] Sun, X., T. Plocher and W. Qu (2007). An Empirical Study on the Smallest
Comfortable Button/Icon Size on Touch Screen, Usability and Internationalization,
Lecture Notes in Computer Science: HCI and Culture, Springer Berlin, Vol 4559.

[48] Terrenghi, L., D. Kirk, A. Sellen and S. Izadi (2007). Affordances for manipulation
of physical versus digital media on interactive surfaces. Paper presented at the
meeting of the CHI '07: Proceedings of the SIGCHI conference on Human factors
in computing systems, New York, NY, USA.

[49] Tsai, W. C. and C. F. Lee (2009). A study on the icon feedback types of small
touch screen for the elderly, Universal Access in HCI, Part II, HCI 2009,
LNCS5615, Paper presented at the 13th International Conference on Human-
Computer Interaction, San Diego, USA, pp. 422-431.

[50] Vastenburg, M., Visser, T., Vermaas, M., & Keyson, D. (2008). Designing
acceptable assisted living services for elderly users. Ambient Intelligence, 1–12

[51] Wäljas, M., Segerståhl, K., Väänänen-Vainio-Mattila, K., & Oinas-Kukkonen, H.
(2010). Cross-platform service user experience: A field study and an initial
framework. Proceedings of the 12th international conference on Human computer
interaction with mobile devices and services (pp. 219–228). ACM.

[52] Wobbrock, J.O., M.R.Morris and A.D. Wilson (2009). User-defined gestures for
surface computing. Proceedings of the ACM Conference on Human Factors in
Computing Systems (CHI '09). Boston, Massachusetts (April 4-9, 2009). New
York: ACM Press.

[53] Wood, E., T. Willoughby, A. Rushing, L. Bechtel and J. Gilbert (2005). Use of
Computer Input Devices by Older Adults. Journal of Applied Gerontology 24(5):
419-438.

[54] Yang, T. (2008). Appropriate User Interface for the Elderly. Seminarreport
[55] Yuan, Y., Y. Liu and K. Barner (2005). Tactile Gesture Recognition for People with

Disabilities. ICASSP. Vol 5, pp 461 – 464.
[56] Information technology - user interfaces - universal remote console. International

Organization for Standardization, ISO/IEC 24752, 2008.
[57] Information technology - user interfaces - universal remote console - user interface

socket description. International Organization for Standardization, ISO/IEC 24752-
2, 2008.

[58] Gottfried Zimmermann and Gregg Vanderheiden. The universal control hub: an
open platform for remote user interfaces in the digital home. In Proceedings of the
12th international conference on Human-computer interaction: interaction
platforms and techniques, HCI’07, pages 1040–1049. Springer-Verlag, 2007.

D3.1 Report on user interface analysis

AALuis 48

[59] Angel Puerta and Jacob Eisenstein. XIML: A universal language for user
interfaces. Technical report, RedWhale Software, 2001.

[60] Matt Oshry, Michael Bodell, Paolo Baggia, Daniel C. Burnett, Alex Lee, David
Burke, Jerry Carter, Emily Candell, R. J. Auburn, Brad Porter, Ken Rehor, and
Scott McGlashan. Voice extensible markup language (VoiceXML) 2.1. W3C
recommendation, W3C, 2007.

[61] Dick Bulterman. Synchronized multimedia integration language (SMIL 3.0). W3C
recommendation, W3C, 2008.

[62] Kouichi Katsurada, Yusaku Nakamura, Hirobumi Yamada, and Tsuneo Nitta.
XISL: a language for describing multimodal interaction scenarios. In Proceedings
of the 5th international conference on Multimodal interfaces, ICMI’03, pages 281–
284. ACM, 2003

[63] John M. Boyer. XForms 1.0 (third edition). First edition of a recommendation,
W3C, 2007

[64] Ali Arsanjani, David Chamberlain, Dan Gisolfi, Ravi Konuru, Julie Macnaught,
Stephane Maes, Roland Merrick, David Mundel, T. V. Raman, Shankar
Ramaswamy, Thomas Schaeck, Rich Thompson, Angel Diaz, John Lucassen, and
Charles Wiecha. (WSXL) web service experience language version 2. Technical
report, IBM, 2002.

[65] David Chamberlain, Angel Díaz, Dan Gisolfi, Ravi B. Konuru, John M. Lucassen,
Julie MacNaught, Stéphane H. Maes, Roland Merrick, David Mundel, T. V.
Raman, Shankar Ramaswamy, Thomas Schaeck, Richard Thompson, and
Charles Wiecha. WSXL: A web services language for integrating end-user
experience. In Proceedings of the Fourth International Conference on Computer-
Aided Design of User Interfaces, CADUI’02, pages 35–50, 2002.

[66] James Clark and Steven DeRose. XML path language (XPath) version 1.0. W3C
recommendation, W3C, 1999

[67] James Clark and Steven DeRose. XML path language (XPath) version 1.0. W3C
recommendation, W3C, 1999

[68] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. A unifying reference framework for multi-target
user interfaces. Interacting with Computers, 15:289–308, 2003

[69] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon,
Murielle Florins, and Daniela Trevisan. USIXML: A user interface description
language for context-sensitive user interfaces. In Proceedings of the ACM
AVI’2004 Workshop "Developing User Interfaces with XML: Advances on User
Interface Description Languages", AVI’04, pages 55–62, 2004

[70] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and
Vнctor López-Jaquero. USIXML: a language supporting multi-path development of
user interfaces. In Proceedings of the 9th IFIP Working Conference on
Engineering for Human-Computer Interaction jointly with the 11th Int. Workshop on
Design, Specification, and Verification of Interactive Systems, volume 3425 of
EHCI-DSVIS’2004, pages 200–220. Springer Verlag, 2004.

[71] Constantinos Phanouriou. UIML: A Device-Independent User Interface Markup
Language. PhD thesis, Virginia Polytechnic Institute and State University, 2000.

D3.1 Report on user interface analysis

AALuis 49

[72] James Helms, Robbie Schaefer, Kris Luyten, Jean Vanderdonckt, Jo Vermeulen,
and Marc Abrams. User interface markup language (UIML) version 4.0. Technical
report, Organization for the Advancement of Structured Information Standards
(OASIS), 2009.

[73] Robbie Schaefer, Steffen Bleul, and Wolfgang Mueller. Dialog modeling for
multiple devices and multiple interaction modalities. In Proceedings of the 5th
international conference on Task models and diagrams for users interface design,
TAMODIA’06, pages 39–53. Springer Verlag, 2007

[74] Fabio Paternò, Carmen Santoro, and Lucio Davide Spano. MARIA: A universal,
declarative, multiple abstraction-level language for service-oriented applications in
ubiquitous environments. ACM Trans. Comput.-Hum. Interact., 16:19:1–19:30,
2009.

[75] Microsoft. XAML in WPF - .NET Framework 4. http://msdn.microsoft.com/en-
us/library/ms747122.aspx.

[76] Neil Deakin. XUL Tutorial. Mozilla Developer Network (MDN).
https://developer.mozilla.org/en/XUL_Tutorial

[77] Dave Raggett. Getting started with VoiceXML 2.0. W3C, 2001.
http://www.w3.org/Voice/Guide/.

[78] Holzinger, A., Schaupp, K., Eder-Halbedl, W.: An investigation on acceptance of
ubiquitous devices for the elderly in a geriatric hospital environment: Using the
example of person tracking. In Computers Helping People with Special Needs,
11th International Conference, ICCHP 2008, Linz,

[79] Dave Bryant. The uncanny valley - Why are monster-movie zombies sohorrifying
and talking animals so fascinating? Available at:
http://www.arclight.net/~pdb/nonfiction/uncanny-valley.html

[80] Morandell, M.: Day Structuring Assistance for People with Alzheimer’s Disease.
Master Thesis at the University of Linz, Austria, (2007)

[81] Morandell, M., Hochgatterer, A., Wöckl, B., Dittenberger, S., & Fagel, S. (2009).
Avatars@home - interfaceing the smart home for elderly people. Paper presented
at Lecture notes in Computer Science.

[82] Spierling, U.: Der Avatar: "Ein Wesen, eine Spielgur, ein Medium, oder ein UI-
Element?". In: Umhegt oder abhängig? Springer Berlin Heidelberg (2006)

[83] Masahiro Mori (translated by Karl F. MacDorman and Takashi Minato). The
uncanny valley. Available at:
http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley
.html CogSci-2005 Workshop Towards Social Machansims.

[84] Wu, P., Miller, C.: Results from a Field Study: The Need for an Emotional
Relationship between the Elderly and their Assistive Technologies. In: 1st
International Conference on Augmented Cognition, Las Vegas (2005)

[85] Wada, K, Shibata, T; Kawaguchi, Y: Long-term Robot Therapy in a Health Service
Facility for the Aged - A Case Study for 5 Years: 2009 IEEE 11TH
INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS, VOLS 1
AND 2 Book Series: International Conference on Rehabilitation Robotics ICORR
Pages: 1084-1087

http://msdn.microsoft.com/en-us/library/ms747122.aspx
http://msdn.microsoft.com/en-us/library/ms747122.aspx
https://developer.mozilla.org/en/XUL_Tutorial
http://www.w3.org/Voice/Guide/
http://www.arclight.net/%7Epdb/nonfiction/uncanny-valley.html
http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html
http://www.androidscience.com/theuncannyvalley/proceedings2005/uncannyvalley.html

D3.1 Report on user interface analysis

AALuis 50

[86] Ian Andrew James, Lorna Mackenzie, Elizabeta Mukaetova-Ladinska: Doll use in
care homes for people with dementia; International Journal of Geriatric Psychiatry
Volume 21, Issue 11, pages 1093–1098, November 2006

[87] Vanderheiden. G., Zimmermann, G., and Trewin S.Interface sockets, remote
consoles, and natural language agents - a V2 URC standards
whitepaper.Technical report, URC Consortium, 2005

[88] Tools and Prototype Implementations for the URC Framework
http://myurc.org/tools/

[89] Wireless application protocol – wireless markup language specification. Technical
report, Wireless Application Protocol Forum, 2000

[90] Front-end Specification of XISL,
http://www.vox.tutkie.tut.ac.jp/XISL/XISL_Web_Site_E/XislFESpecE.html

[91] Prendinger, H.Ishizuka, M., Life-Like Characters – Tools, Affective Functions, and
Applications. Springer Verlag 2004

[92] Web Service Experience Language, IBM,
http://www.ibm.com/developerworks/library/specification/ws-wsxl/

[93] Limbourg, Q., Vanderdonekt, J., Michotte, B., Bouillon, L., Florins, M., Trevisan,
D., USIXML: A user interface description language for context-sensitive user
interfaces, Proceedings of the ACM AVI’2004 Workshop “Developing User
Interfaces with XML: Advances on User Interface Description Languages”, AVI’04,
p 55-62, 2004

[94] Michotte, B., Vanderdonekt, J., GrafiXML, a multi-target user interface builder
based on UsiXML. Proceedings of the Fourth International Conference on
Autonomic and Autonomous Systems, ICAS’08 p 15-22, IEEE Computer Society,
2008

[95] James Helms, Robbie Schaefer, Kris Luyten, Jean Vanderdonckt, Jo Vermeulen,
and Marc Abrams. User interface markup language (UIML) version 4.0. Technical
report, Organization for the Advancement of Structured Information Standards
(OASIS), 2009

[96] The OASIS Technical Committee, http://www.oasis-open.org/committees
[97] The UIML Specification, http://uiml.org/specs/index.htm
[98] HIIS Laboratory, The MARIA Environment, http://giove.isti.cnr.it/tools/MARIAE/
[99] Mono: Olive Project,http://www.mono-project.com/Olive
[100] Mono: Moonlight Project, http://www.mono-project.com/Moonlight
[101] Nigel McFarlane. Create Web applets with Mozilla and XML, 2003.

http://www.ibm.com/developerworks/web/library/wa-appmozx/.
[102] Extensible Interface Markup Language, a universal language for user interfaces,

http://www.ximl.org

http://myurc.org/tools/
http://www.vox.tutkie.tut.ac.jp/XISL/XISL_Web_Site_E/XislFESpecE.html
http://www.ibm.com/developerworks/library/specification/ws-wsxl/
http://www.oasis-open.org/committees
http://uiml.org/specs/index.htm
http://giove.isti.cnr.it/tools/MARIAE/
http://www.mono-project.com/Olive
http://www.mono-project.com/Moonlight
http://www.ibm.com/developerworks/web/library/wa-appmozx/
http://www.ximl.org/

	AALuis Consortium
	Table of Contents
	Table of Figures
	List of Tables
	Abbreviations
	Executive Summary
	1 About this Document
	1.1 Role of the deliverable
	1.2 Relationship to other AALuis deliverables

	2 Interaction Modalities for Older People
	2.1 Touch interaction: advantages and risks
	2.1.1 General (not age-related) insights from research
	2.1.1.1 Evaluation of Touch strategies:
	2.1.1.2 Evaluation of Thumb Input for Touch Screens:

	2.1.2 Age-related insights
	2.1.2.1 Experiences with touch screens:
	2.1.2.2 Experiences with NFC-based touch interactions:
	2.1.2.3 Touch interaction vs. Pen interaction:

	2.1.3 Guidelines
	2.1.3.1 Web Design Guidelines for Elderly (Source: [18])
	2.1.3.2 Heuristics for Older Adults as Web Users (Source: [5])
	2.1.3.3 Heuristics for Tabletop Systems (Source: [1])

	2.2 Avatars: an opportunity to involve older people
	2.2.1 What is an avatar?
	2.2.2 Perception of Avatars
	2.2.2.1 Audio Visual perception:
	2.2.2.2 EyeCatcher Effect

	2.2.3 The Uncanny Valley

	2.3 The chances of Voice-based interaction

	3 User Interface Description Languages
	3.1 Analysis criteria for UIDLs in AALuis
	3.2 Analysis of UIDLs
	3.2.1 ISO/IEC 24752 Universal Remote Control, Presentation Template Mark-up Language (PreT)
	3.2.2 Extensible Interface Mark-up Language (XIML)
	3.2.3 Extensible Interaction Scenario Language (XISL)
	3.2.4 Web Service Experience Language (WSXL)
	3.2.5 User Interface Extensible Mark-up Language (UsiXML)
	3.2.6 User Interface Mark-up Language (UIML)
	3.2.7 Dialog and Interface Specification Language (DISL)
	3.2.8 Model-based Language for Interactive Applications (Maria XML)
	3.2.9 Voice XML
	3.2.10 Extensible Application Mark-up Language (XAML)
	3.2.11 XML User Interface Language (XUL)

	3.3 Results of the UIDL Analysis

	4 Enabling Freedom of Choice of User Interfaces
	4.1 Consistency of Multiple User Interfaces
	4.1.1 Three-dimensional model of interface consistency
	4.1.2 Multiple User Interfaces and Consistency
	4.1.3 Usability and UX Assessment of MUIs
	4.1.3.1 Taxonomy of usability factors for MUIs (Öquist et al. 2004[31])
	4.1.3.2 Multi-Device UI analysis grid (Denis and Karsenty 2004 [6])
	4.1.3.3 Initial Framework for cross-platform UX (Wäljas et al. 2010 [51])

	4.1.4 Design Frameworks for consistent MUIs

	References

