

Documented Prototype of

Dialogue Manager

Project acronym: ALIAS
Project name: Adaptable Ambient Living Assistant

Strategic Objective: ICT based solutions for Advancement of
Social Interaction of Elderly People

Project number: AAL-2009-2-049

Project Duration: July, 1st 2010 – Juni, 30th 2013 (36months)

Co-ordinator: Prof. Dr. Frank Wallhoff

Partners: Technische Universität München
Technische Universität Ilmenau
Metralabs GmbH
Cognesys GmbH
EURECOM
Guger Technologies
Fraunhofer Gesellschaft
pme Familenservice
YOUSE GbR

D3.4

Literaturverzeichnis
Im aktuellen Dokument sind keine

Quellen vorhanden.

X.X

Version: 1.01

Date: 28. April 2011

Autor: Andreas Franke

Dissemination status: PU

This project is co-funded by the Ambient Assisted Living (AAL) Joint

programme, by the German BMBF, the French ANR, the Austrian BMVIT.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 2 of 15

Once completed please e-mail to WP leader with a copy to

 eric.bourguignon@tum.de and frank@wallhoff.de.

Del 3.4 Executive Summary

Following the concept described in D3.1, a prototype of the dialogue manager has been
realized, based on the CES core system. It features an interface to the RobotDaemon
and an input channel for natural language. Application binaries have been installed on
the robots, and their functionality has been verified with a basic navigation scenario.

Dissemination Level of this deliverable (Source: Alias Technical Annex p20 & 22)

PU Public

Nature of this deliverable (Source: Alias Technical Annex p20 & 22)

R Report

Due date of deliverable 30.04.2011

Actual submission date 28.04.2011

Evidence of delivery

Authorisation

No. Action Company/Name Date

1 Prepared cognesys GmbH,
Andreas Franke

28.04.2011

2 Approved IUT, Jens Kessler 04.05.2011

3 Approved TUM-MMK,
Jürgen Geiger

20.05.2011

Disclaimer: The information in this document is subject to change without notice. Company
or product names mentioned in this document may be trademarks or registered trademarks
of their respective companies.

mailto:eric.bourguignon@tum.de
mailto:frank@wallhoff.de

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 3 of 15

Table of contents

1. Introduction ... 4

2. Requirements .. 5

2.1 Input to the Dialogue Manager .. 5

2.2 Technical Requirements ... 6

3. Design & Structure .. 7

3.1 The Inner Part of the Dialogue Manager ... 7

4. Implementation ... 11

4.1 The Dialogue Manager Core .. 11

4.2 The Dialogue Manager Communicator .. 11

4.2.1 The RobotDaemon Interface ... 12

4.2.2 The Interface to the Speech Recognition Module ... 12

4.2.3 Other Interfaces ... 13

5. Usage & Testing ... 14

5.1 Testing .. 14

6. Conclusion & Outlook .. 15

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 4 of 15

1. Introduction

The ALIAS robot will have to perform a variety of functions and behaviours in order to be useful as a

companion for elderly people. These behaviours need to be selected and activated depending on the

communication with the user on the one hand, and the actual state of the robot on the other hand.

In the ALIAS project, the high-level selection of an appropriate robot behaviour in the light of the

available inputs is the task of the dialogue manager. In this sense, it controls the robot.

This makes the dialogue manager a central component of the robot system: It is a component that

has many connections to other modules from which it receives inputs. And when it generates

decisions about the robot's behaviour, it sends the corresponding outputs or commands to the

appropriate modules that can realize the desired actions.

The general concept for the dialogue manager has been described in deliverable D3.1. Figure 1 shows

the overall architecture again:

Figure 1: Overall Architecture of the Dialogue Manager

As we concluded there, the dialogue manager has to integrate the information from diverse sources,

namely human input, robot input and knowledge about available services. This integration is based

on the Cognesys core system as a central “translation” unit.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 5 of 15

2. Requirements

In this section, we summarize the functional expectations with regard to the dialogue manager, and

the constraints derived from the technical environment.

2.1 Input to the Dialogue Manager

Summarizing deliverable D3.1, section 3, the dialogue manager needs to process input from the

following modules:

 Net-based services and other applications: The robot offers a multitude of services to the

user, e.g. reminder, email, web browsing, gaming, etc. The dialogue manager must be able

to activate these different services, either through free speech or using textual input on the

touch screen. In most cases, the dialogue manager must also be able to terminate the

services. Depending on the individual level of integration with each service, the dialogue

manager must also receive globally relevant inputs and events from the net-based services.

 Robot sensors & spatial orientation system (high-level modules e.g navigation)

 Speech interface

 Touch screen

 Brain computer interface

 Person detection and identification by voice and face

Based on input from these modules, it must select and activate suitable behaviours in response, and

generate appropriate speech acts.

While performing this task, the set of active behaviours must always be consistent. In particular, it

must be ensured that conflicting applications and processes are not active at the same time. For

example, when the battery is empty, any requests to play games need to be delayed until the robot

has been recharged.

In order to ensure this consistency in performing robot control and user interaction, the dialogue

manager has to keep track of the current global state of the robot.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 6 of 15

2.2 Technical Requirements

The available computing resources and hardware environment of the robot are shown in figure 2.

Figure 2: Basic Hardware Setup of the ALIAS Robot Prototype

While the navigation subsystem and other more hardware-oriented modules are running on the

SCITOS-PC, many of the user services will be realized as web applications running in the browser, or

as application binaries. In both cases, they will be running on the Mac Mini, running MS Windows.

Since the dialogue manager must be able to launch and terminate these application services, it has

been decided for it to run on the Mac Mini, too. Thus the dialogue manager is a Windows

application, too. As a side effect, this minimizes development effort through reuse of existing

infrastructure. Effective communication with relevant modules on the SCITOS-PC is ensured by the

fast ethernet connection.

Since the dialogue manager shares its host machine with several other application processes, it

needs to be designed to make efficient use of the computational resources available there.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 7 of 15

3. Design & Structure

From a functional perspective, the dialogue manager can be seen as implementing a mapping from

events (ranging from simple ones like “Battery empty” to more complex ones like input from the

speech recognizer), to result signals (notably control signals for the robot on the one hand, and visual

and/or natural language output to the user).

In order to produce a consistent behavior, the dialogue manager must respond to the incoming

events and inputs from applications and the rest of the system in such a way that no conflicting

signals are generated at the same time. To ensure this, event processing is effectively serialized, so

that any events are processed one at a time. Currently this is realized as an event processing loop,

but more sophisticated scheduling mechanisms for the case of multiple events occurring almost at

the same time may be considered in future versions.

Upon receiving updates from these subsystems, the dialogue manager decides on a suitable

response behavior and activates it by sending a command to the respective module.

Our design can be split in two parts: an inner part operating on a uniform conceptual representation

that maps the input events to some suitable output actions, and an outer part that deals with the

communication protocols and translates from and to the external data formats.

Using this architecture with its conceptual foundation and a set of independent, possibly diverse I/O

adapters, enables the dialogue manager to integrate a wide range of different modules in the

heterogeneous robot environment without having to commit to a common, uniform, system-wide

middleware infrastructure that every component has to use.

We now describe the two parts in more detail.

3.1 The Inner Part of the Dialogue Manager

Inputs from other parts of the system can only reach the core part of the dialogue manager after

they have been received and properly preprocessed by the corresponding input adapters, which are

not part of the dialogue manager core. Therefore, we can enforce the principle that the core part of

the dialogue manager operates on a strictly conceptual level. It processes the given information in

two phases, as shown in figure 3. The first one of these is the understanding phase. Its purpose is to

establish the semantics of the input. After that, there is a second phase for decision making,

resulting in appropriate actions. In the following, we describe these two processing phases in more

detail.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 8 of 15

Figure 3: Schematic View of the DM Core

An input that reaches the core part of the dialogue manager can be represented as a sequence of

concepts. For example, this can be a natural language utterance like “come here please”, or an event

received from the robot hardware, like a “BatteryEmptyEvent”. While the meaning of the latter is

straightforward, it is especially in the case of natural language input important that the semantics of

the phrases received has to be reconstructed. This is achieved by establishing the appropriate links

among the concepts of the phrase processed, based on the relevant parts of the world knowledge

and the expert knowledge. In this way, the input is converted into a structured representation. In the

case of “come here please”, the concept “here” is determined to be the destination location for

“come”. The result is a structure that represents the fact that the robot is requested to move to the

current location of the user: request (move(Robot, Location(User))).

During the understanding phase, the relevant information is retrieved from the situation model. In

our example, this may be the current location of the robot and the last known location of the user,

and the fact that there is no specific application active on the robot that the utterance could be

related to. This situation information also contributes essentially to e.g. efforts to disambiguate

between different word senses for a given input word, or to choose from a set of alternative words

(cf. Section 4.2.2).

In the second phase, the structured information is processed further in order to derive appropriate

actions or commands for the robot. In preparation for the decision, the situation model may need to

be consulted again. We use the situation model to keep track of the relevant ongoing activities and

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 9 of 15

active processes. Thus, before a decision to engage in a new activity, e.g. to drive towards the user,

is taken, any conflicting ongoing activities can be determined, e.g. in case the robot is already limited

in his scope of action due to an empty battery. The check for potential side effects and conflicts

relies heavily on the expert knowledge. Among other things, it provides assertions like „gaming on

the Wii and other user application services are mutually exclusive“, so they cannot be active

together.

In the end, the decision making phase determines a particular set of actions. When that point is

reached, the situation model is updated accordingly, e.g. by adding an entry for a newly started

activity.

3.2 The Outer Part of the Dialogue Manager

For communication with the rest of the ALIAS system, the dialogue manager core is embedded in a

communicator shell which provides input & output adapters for interaction with the other modules.

In the process, it serializes the incoming data for processing by the DM Core as described in the

previous section. This design is presented in figure 4.

Figure 4: Schematic View of the DM Communicator

There is of course no fixed connection between input and output channels: an input arriving via a

certain input adapter can generate outputs for any number of output adapters. Please see some

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 10 of 15

example scenarios:

 The robot fires a „BatteryEmptyEvent“. Such an event will be preprocessed by the leftmost

input adapter and then passed on to the DM Core. In response, the Core may issue at least

two actions, which are then forwarded to their destinations by different output adapters: (i)

a control command (sent via the leftmost output adapter) that tells the robot to drive to the

docking station (if there is one), and (ii) an output to the user that explains what is

happening, after being postprocessed by the second output adapter.

 The user says „come here please“. This input is received from the speech recognizer via the

second input adapter and passed on to the DM Core, which may then decide to comply with

this user request and issue an appropriate action. This action is then passed on to the

leftmost output adapter, which translates it into a „GotoUser“ event and finally fires that

event in the robot control system.

 If the user says „I would like to make a phone call to my sister“, the processing is similar to

the previous case, except that the actions determined by the DM Core may in this case

include activating the phone application, which is carried out by a yet another output

adapter.

The implementation details of the DM Communicator are described in section 4.2.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 11 of 15

4. Implementation

In order to provide for an efficient development cycle in the light of different change rates, the

dialogue manager implementation has been split into two parts: (i) the core engine for dealing with

the inputs on the conceptual level, thereby producing appropriate outputs, and (ii) an outer shell for

integrating the connections with the different components of the robot, driving the serialized event loop.

In the current prototype, both of these parts have been implemented in Common Lisp, using

LispWorks as the development environment. The resulting application binaries have been installed to

the robots, as is further described in section 5.

4.1 The Dialogue Manager Core

The DM Core implementation is based on the Cognesys core engine, with a custom knowledge base

for the ALIAS project (see deliverable D3.2). This core engine indeed makes efficient use of

computational resources (as specified in section 2.2).

Internal to the dialogue manager, the DM Core provides a TCP/IP-based interface for use by the DM

Communicator.

4.2 The Dialogue Manager Communicator

The DM Communicator provides input and output adapters that enable the various system

components to communicate with the DM Core.

These system components are:

 the robot hardware (e.g. battery) and the navigation system

 the speech recognizer, providing natural language input from the user

 the speech synthesis system, providing natural language output to the user

 the symbolic keyboard with its buttons

 the brain computer interface

 physiological monitoring

 sensor processing modules like face identification, voice identification and person detection

 specific applications like email, gaming, etc.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 12 of 15

The input and output to the robot hardware and navigation system is described in section 4.2.1, the

speech input interface is described in section 4.2.2, and the other interfaces are described in section 4.2.3.

4.2.1 The RobotDaemon Interface

The DM Communicator has got a combined input/output adapter connection to the RobotDaemon

process running on the SCITOS PC (i.e. the Linux machine). This connection is based on the SCITOS-

Script-Interface protocol from MetraLabs. In this protocol, the RobotDaemon acts as a server, while

the DM Communicater acts as a client. The messages are exchanged over a TCP/IP connection; the

message format is based on ASCII and XML.

This protocol defines two mechanisms for information exchange, using a shared TCP/IP connection:

The first mechanism allows the dialogue manager to send a REQUEST message to the RobotDaemon

and receive the corresponding ANSWER message (with matching id). Independently of this, the

protocol specifies an event framework as a second mechanism. In this framework, the dialogue

manager can register for events it is interested in (via the REGISTER_EVENT message), for which it

will later receive notifications (in the form of EVENT messages) whenever it occurs. Using the

FIRE_EVENT message, the dialogue manager can trigger events, too.

Support for all of these messages has been implemented in the DM Communicator. The current

prototype primarily makes use of the event framework, as described in section 5.1.

4.2.2 The Interface to the Speech Recognition Module

The integration with the speech recognition module developed by Fraunhofer IDMT is currently

under way. In the first version, an utterance will be received by the DM Communicator as a sequence

of words, possibly augmented with alternatives in case of recognition uncertainty.

Upon receiving an input sequence, the dialogue manager generally performs the task of correcting

errors and linking up the concepts, thereby in effect understanding the meaning. As different

alternatives come in, they are passed through to the core. In the process of linking up the concepts,

the core then chooses a suitable alternative that is consistent with the context. Suppose “come” is

followed by the alternatives coming from the speech recognition “hear” / “here”, it will be

determined that “here” fits well together with “come”, as opposed to “hear” which does not.

On the technical side, priorities are to ensure seamless future extensibility, while at the same time

avoiding complexity as much as possible. To that effect, both the communication protocol (HTTP)

and the encoding language for the payload data (JSON or XML) will be based on existing standards,

with suitable libraries readily available for all programming languages used in our project.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 13 of 15

4.2.3 Other Interfaces

The interfaces to other system modules are currently still under development.

 The brain computer interface will be based on an upcoming standard developed by GTec.

 Communication with the person detection module will be realized via the RobotDaemon

interface.

 Incoming events from applications like “email has arrived” will be handled similar to events

from the RobotDaemon.

 Speech acts targeted at the user will be sent to the speech synthesis system.

 Starting of an external application will be possible in two variants:

 Launching of an external Windows application binary.

 Launching of a browser-based web application.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 14 of 15

5. Usage & Testing

The dialogue manager prototype consists of two executables located on the MacMini machine in the

directory C:\ALIAS\ :

1. DialogueManagerCore.exe

2. DialogueManagerCommunicator.exe

When the robot is started, the DM Core is launched first, followed by the DM Communicator, which

then connects to the RobotDaemon. This connection is automatically established again if the

RobotDaemon needs to be restarted.

5.1 Testing

In order to be able to simulate selected chains of events without a robot, a test application called

DummyRobotDaemon.exe has been built. It can be started on any machine using the MS

Windows Operating System; the same can be done with the dialogue manager binaries. In this case,

the IP-Address of that machine can be given to the DM Communicator at startup as a command line

parameter, e.g.

DialogueManagerCommunicator.exe --rd-host 127.0.0.1

Then the RobotDaemon server will be expected on that host instead. As usual, the port number

currently used for the RobotDaemon server is 22222, but this can be changed, too, if need be, by

providing the --rd-port option.

With this setup, the round trip from the dialogue manager to the Navigation system and back can be

verified as follows:

A natural language input of “bitte komm her” (German for “come here please”) is submitted from

the DM Communicator Test Panel.

This input is passed to the DM Core for processing, eventually causing the DM Communicator to fire

a GotoUser event in the RobotDaemon process.

The RobotDaemon activates an associated behaviour that currently uses the face identification

module to compute the approximate location of the user and then calls the navigation system to

drive the robot to that position in a polite manner.

Depending on the success of executing the navigation plan, eventually an appropriate event is fired,

e.g. NavigatorGoalReachedEvent or NavigatorGoalNotReachableEvent .

This event is received by the DM Communicator and passed on to DM Core for processing.

AAL-2009-2-049 ALIAS D 3.4 v 1.02

File: D3.4 Documented Prototype of Dialogue Manager Page 15 of 15

The above scenario works both on the robot (with the real RobotDaemon) and in a simulator

configuration (with our test server). The field test has been performed during the "Integration

Meeting“ at MetraLabs in Ilmenau on April 11, using the robot from TUM-MMK.

6. Conclusion & Outlook

As we have seen above, the dialogue manager prototype has been developed and tested

successfully, both on the robot and in our pure software environment. We have realized some basic

scenarios to demonstrate its effectiveness, in particular with regard to the interaction with

navigation and face identification services.

In the near future, the interfaces to the speech recognizer and other modules will be further refined

as integration progresses. The specification process for the concrete data format for the transmission

of the speech recognizer results to the dialogue manager, is currently ongoing; the same holds true

for the brain computer interface.

