

AMBIENT ASSISTED LIVING, AAL

JOINT PROGRAMME

ICT-BASED SOLUTIONS FOR ADVANCEMENT OF OLDER PERSONS’

INDEPENDENCE AND PARTICIPATION IN THE “SELF-SERVE SOCIETY”

D4.1

Mobile Client

Project acronym: GeTVivid

Project full title: GeTVivid - Let’s do things together

Contract no.: AAL-2012-5-200

Author: EVISION

Dissemination: Public

AAL-2012-5-200 D4.1

 Page 2 of 25

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY ... 4

1.1 LINK WITH THE OBJECTIVES OF THE PROJECT ... 4

2. CONCEPTION ... 5

2.1 REQUIREMENTS AND CONCEPTION ... 5

2.1.1 Hardware ... 5

2.1.2 Platform independency (neutral application) .. 5

2.1.3 Concept decision .. 6

2.1.4 Different ways of client usage ... 8

3. SYSTEM ARCHITECTURE ... 10

3.1 FRONTEND-BACKEND INTERACTION .. 10

3.1.1 System overview without synchronization ... 10

3.1.2 System overview with synchronization .. 11

3.1.3 Layer based overview .. 12

4. MOBILE CLIENT COMPONENTS .. 13

4.1 ARCHITECTURE OVERVIEW .. 13

4.2 GETVIVID - WEB APPLICATION .. 14

4.2.1 Mobile client and HbbTV client - A collaborative project ... 14

4.2.2 Design of the graphic user interface .. 14

4.2.3 Specific implementations for the mobile client .. 17

4.2.4 Backend communication.. 22

4.2.5 Synchronisation of the clients .. 22

5. OVERALL CONCLUSION .. 25

AAL-2012-5-200 D4.1

 Page 3 of 25

TERMINOLOGY & ABBREVIATIONS

ACS ... Appointment Coordination System.

AJAX call ... An asynchron HTTP(S) call, implies no reload of the browser window content

(no blank screens or error codes). The transferred data is encoded as JSON

or XML.

API .. Application Programming Interface. It specifies how applications interact

with each other.

CSS .. A language to define the style of HTML elements (<tags>).

Git / SVN ... Programs that help to store different versions of files on servers and clients.

GUI ... Graphic User Interface

HbbTV ... Hybrid broadcast broadband Television.

HTML .. A markup language to structure information.

HTTP ... A protocol used by browsers and web applications to get or post information

in the world-wide-web.

HTTPS ... Like HTTP, but the data is sent encrypted.

JavaScript A programming language that runs on HbbTV-ready devices, HTML5 mobile

applications and every modern web browser.

JQuery .. A framework that allows to write browser-independent JavaScripts.

JSON ... JavaScript Object Notation. Open standard that uses human readable text to

describe objects for data exchange (usually) between client and server.

OAuth 2.0 Open Standard for Authorization 2.0. One server stores credentials, other

servers or clients (services) may ask it, if the user is authenticated and

authorized to use a certain service. The big idea: A user only need one

account to use multiple services (e.g. log-in to Spotify with your Facebook

account).

REST .. Representational State Transfer, basically a mapping from a HTTP address

(URL) to an object (e.g. calendar entry) or a process (like authentication or

creation of something on the server-side).

SSF .. Second Screen Framework

STB ... Set-top-box

Wi-Fi ... Wireless Fidelity

Wire Frame A crude design sketch.

AAL-2012-5-200 D4.1

 Page 4 of 25

1. EXECUTIVE SUMMARY

1.1 Link with the objectives of the project

In accordance to the project proposal, the Mobile-Client is meant to be a “Second-Screen-Device” for the

GeTVivid system running on a HbbTV set at the home of elderly people. In this role it will not only be a display

screen, but more an important additional input and controlling device for the whole system. In order to reach

this goal the mobile application need to work hand-in-hand with the application running on the television. In

fact hand-in-hand means a synchronization between the HbbTV client and the Mobile-Client is necessary.

The Mobile-Client is conceptualized as hybrid application for mobile devices, using web-application techniques

as core part of a native application. Using this technical approach, it is possible to keep the architecture design

of the Mobile-Client analog to the conception of the HbbTV client and coincidently enhancing the usage of the

existing Second-Screen-Framework for the synchronization.

The main tasks described in this document are T4.2 (development of Mobile-Client) and T4.3 (Integration with

core platform). Requirements resp. functionalities are derived from T2.2 (user requirements investigation),

T3.1 (system conception and architecture) as well as T4.1 (design of the mobile user interface). The purpose of

this document is to give comprehensive insights regarding the conceptual approach of the Mobile-Client and

the technical details of its implementation.

AAL-2012-5-200 D4.1

 Page 5 of 25

2. CONCEPTION

2.1 Requirements and conception

The mobile client is conceptualized as an additional input and output device for the GeTVivid platform. It is not

meant to replace the traditional remote control of the television, especially not in standard TV operations, like

for example changing the channels. But it should give the user a more convenient way of interaction with

system than the remote control is able to provide.

2.1.1 Hardware

Because of their sophisticated hardware specifications, modern mobile devices like smartphones and tablets

provide the most convenient way of system interaction for the user. Especially, the intuitive and reliable touch

interaction promotes a maximum level of usability even for more complex controlling tasks, for younger people

as well as for elderly people with mild impairments.

The first round of end user evaluations had shown that tablet devices with a display size of about 10 inch suites

best for the tasks of GeTVivid. The devices are not too big and not too heavy, so the end user can handle them

well. And the big size display together with a higher resolution provides more space for bigger icons and font-

sizes, so all the functions and symbols can be recognized more easily. For this reason a display size of about 10

inch is highly recommended.

Beside this there are only two more hardware requirements, a running Wi-Fi connection and an onboard photo

camera (that is needed to scan a QR-Code during the coupling process between TV and mobile client. The

details of this coupling process will be explained in detail in Section 4.2.5.1.). But both features are mandatory

for almost all relevant mobile devices available on the market.

2.1.2 Platform independency (neutral application)

For good acceptance and marketability towards the end user, it is mandatory that the mobile client app is

available for a broad range of common mobile devices and not only limited to a specific hardware device. In

order to address this requirement the mobile application is conceived as a “neutral” application. This means

that the app should be available for most common mobile platforms on the market, like Android and iOS.

For the purposes of the development and evaluation process during the project time, the client is being

optimized for devices with Android operating system (V5.x “Lollipop” or higher) because it is the most common

“open” standard in mobile operating systems. But due to the “thin-client” architecture (i.e., a computer

program that depends heavily on another computer (its server) to fulfil its computational roles), as described in

the following document, it will be basically compatible with other versions of the Android operating system.

Due to the “hybrid” architecture it will be possible to adapted the most important core part of the application

to other operating systems by replacing the platform depending, surrounding part by a native app, for other

mobile operating systems, like iOS or WindowsMobile.

AAL-2012-5-200 D4.1

 Page 6 of 25

2.1.3 Concept decision

One of the mayor questions regarding the conception of the mobile client was: Is it necessary to build a “native

app” for the desired target platform or is it better to use a web application or a hybrid concept for the mobile

client? In the following the available possibilities are discussed and the resulting decision will be explained.

2.1.3.1 Native app

A “native app" is an app developed essentially for one particular mobile device and is installed directly onto the

device itself. Users of native apps usually download them via app stores such as the Apple App Store or the

Google Play Store.

The main advantages of native apps are:

 Direct access to the hardware resources of the mobile device, like for example camera or GPS

 Direct access to graphic processing and resources, necessary for applications with 3D graphic features

 Access to special input and controlling capabilities, like special gestures, hardware buttons or stylus,

available only for some special devices

2.1.3.2 Web application

Web applications, on the other hand, are basically internet-enabled apps that are accessible via the mobile

device’s web browser. They need not be downloaded onto the user’s mobile device in order to be accessed.

The main advantages of web apps:

 Using common web techniques like HTLM and CSS standards

 Independent from the operating system of the hardware device

 Not necessary to use or even buy a special kind proprietary development environment

 No app store authorization is needed

2.1.3.3 Hybrid application

Hybrid, by definition is anything derived from heterogeneous sources, or composed of elements of different

kinds. A hybrid app is one that is written with the same technology used for websites and mobile web

implementations, and that is hosted or runs inside a native container on a mobile device. So it is a kind of

marriage between web technology and native execution.

AAL-2012-5-200 D4.1

 Page 7 of 25

Figure 1: Native apps vs. mobile web apps vs. hybrid apps1

Hybrid apps use a web view control (WebView on Android, UIWebView on iOS) to present the HTML and

JavaScript files in a fullscreen format, using the native browser rendering engine and not the browser itself.

That means that the HTML and JavaScript used to construct a hybrid app is rendered or processed by the

WebKit rendering engine and displayed to the user in a full-screen web view control, not in a browser. If

necessary a web-to-native abstraction layer enables access to device capabilities that are not accessible in

mobile web applications, such as the accelerometer, camera and local storage.

Figure 2: App concepts - pros vs. cons2

1 Source: blogs.telerik.com/images/default-source/icenium-blog-posts/native-v-hybrid-png.png?sfvrsn=0

2 Source: http://java.dzone.com/articles/state-native-vs-web-vs-hybrid

AAL-2012-5-200 D4.1

 Page 8 of 25

2.1.3.4 Conclusion: The mobile client as a hybrid app

Matching the pros and cons of the different app conceptions to the general requirements, it becomes clear

that the hybrid approach fits nearly perfect for the desired specifications of the mobile client. The web

application core stays platform independent, while the “shell”, meaning the native app around the web core,

can be easily adapted to other target platforms, like for example iOS or WindowsMobile.

Furthermore, with a hybrid conception it is possible to have consistent design, content and behaviour for

mobile client as well as for the HbbTV client, because from a system architecture perspective HbbTV

applications are also only a special kind of hybrid application. The core part of HbbTV applications is also

basically a web browser with special profiles, connecting and using the corresponding web application. And as

well there are some surrounding components dealing with the internal interaction between TV broadcast

stream and the web content.3

And finally, a hybrid system conception actually allows the usage of the mobile client even without a HbbTV

client, as a standalone solution in case that no connected TV is available. The different ways to use the mobile

client will be explained in more detail in the following section.

2.1.4 Different ways of client usage

Since the mobile client is meant to be a “second-screen-device” for the GeTVivid platform running on an HbbTV

set, it was necessary to define how a “second-screen-device” should behave, in terms of interaction between

the mobile device and the television.

Some basic questions regarding the interaction between both clients had to be answered, like: What content is

shown on the second screen and what content is on the TV? Should they have exactly the same user interface

and functions, so that the appearance on both devises is mirrored? Or is it better to divide user interface and

function between the devices? And in which way should they interact in this case, in order to reach the highest

level of usability?

During the evaluation period of the project these questions were answered in accordance to one of the

fundamental ideas of the project, namely using the television as the device elderly people are most familiar

with, in order to transport additional functionality. According to this strategy, the whole concept of interaction

should be clear, intuitive and as simple as possible. So three different ways of client usage were defined,

starting with the most “traditional” way of interaction.

2.1.4.1 TV stand alone

This is the basic way of system usage, using the classic remote control of the television to control the GeTVivid

application, the same way as in the system menus and other TV applications. This is probably the best way for

new users to have a first contact with the new platform, because the user can use the remote control, which

should be very familiar to him. It is sufficient for a simple experience of the system, like browsing through the

application menus or reading existing entries, posted offers and demands of other users for instance. But it is

pretty inconvenient for the more complex functions, like creating and editing new entries, especially when text

input is required.

3 For further details about the HbbTV client please refer to deliverable D3.1 and D3.2.

AAL-2012-5-200 D4.1

 Page 9 of 25

2.1.4.2 Full synchronisation between the HbbTV and the mobile client (“mirroring”)

For a convenient use of the system, especially for complex tasks, the mobile client should be the preferred

solution. Regarding the interaction between both clients it is specified that functions, user interface and

behaviour should be as similar as possible on both devices. This means also that there should be a full

synchronization between the clients, so that each display is “mirroring” the other display and every input done

with the one device is synchronised via the system to the other device. This principle way of interaction is

intuitive and easy to understand, even for inexperienced users. So it can be avoided, that they get confused or

distracted, when they switch from one device to the other.

2.1.4.3 Overlay display during TV broadcast

In case the application is not already running on the HbbTV, it should be possible to inform the users about

news and updates or special events taking place on the platform by fading in a special text or symbol area

during the regular TV broadcast stream. This overlay area may contain any kind of information, like calendar

and reminder entries, as well as a method of direct interaction, like pushing a specific button to get further

information.4

4 For further details about this mode on the HbbTV client please refer to deliverable D3.2.

AAL-2012-5-200 D4.1

 Page 10 of 25

3. SYSTEM ARCHITECTURE

For a detailed overview over the whole GeTVivid platform regarding conception and architecture, please refer

first to deliverable D3.1. This document is meant to focus on the mobile client and the interaction between

backend and clients, resp. between the HbbTV and the mobile client.

3.1 Frontend-backend interaction

3.1.1 System overview without synchronization

The following figure shows the basic system architecture between backend and clients, first without

synchronization.

Figure 3: Basic architecture without SSF

On the TV the application is started via the TARA systems set-top-box, as described in Section 4.1 of deliverable

D3.2.5 On the mobile device the application is started like standard native app. Once started the application

requests the necessary content from the “GeTVivid Application Server”.

5 GeTVivid deliverable D3.2 - TV Client (p. 12)

AAL-2012-5-200 D4.1

 Page 11 of 25

Mainly the content can be specified as:

 "Common static content" like the graphic components of the user interface, common CSS style sheets

and the common JavaScript libraries.

 In addition to this common content, used by both clients, each client has some specific content, like

special style sheets and JavaScripts, dealing for example with the different ways of input and control

on both devices, classic remote control versus touch interface.

 And the application data itself, like for example user input data or a catalogue of the open offers and

demands posted by users.

This way, both client applications have full access to the system, but both are working independently from each

other. It is possible to work with the system on both devices at the same time but since they are not coupled

via the Second-Screen-Framework there is no synchronization between the applications.

3.1.2 System overview with synchronization

In order to establish the mobile client as a real second screen remote control of the system some kind of

synchronization process is necessary. Figure 4 shows the system with the implementation of the SSF as

synchronization instance. The main working principal is still the same, but additionally both clients exchange

messages about the status of the current application via the SSF Server. This way the applications on both

devices are always at the same status, displaying exactly the same user interface on their screens. The

exchange and synchronization process is explained in more detail in Section 4.2.5.2.

Figure 4: Basic architecture with SSF

AAL-2012-5-200 D4.1

 Page 12 of 25

3.1.3 Layer based overview

Figure 5 shows a layer view of the client and backend structure in order to have a clean view of the involved

components and subcomponents.

Figure 5: Layer based overview

AAL-2012-5-200 D4.1

 Page 13 of 25

4. MOBILE CLIENT COMPONENTS

4.1 Architecture overview

The high-level architecture of the mobile client and its most important components is shown in the following

layer diagram.

Figure 6: Layer diagram of the mobile client

The input Listeners are hardware connected components responsible for catching all input activities on the

device. Physical input activities of the user are translated by the operating system into so called “Events”. The

corresponding input Listener of the App is listening to this input “Events”, like for example onTouch() or

onClick()and processes them according to the application logic.

The Content Processor is a browser-like component dealing with the web content, in terms of viewing, caching

and editing. It represents the “web application core” as it is mentioned in Section 2.1.3.4. In Android this

standard component is called android.webkit.

The SSF Library provides the API necessary for the coupling and the message exchange between the clients.

The principal function of this component and the synchronization process is explained in Section 4.2.5.2.

JavaScript libraries are used for the implementation of all advanced functions of the web application. The

client library developed by the project partners provides the API for the communication with the

backend, like requesting and storing user data. But JavaScipts (JS) are also used, to create functions inside the

mobile app itself, for example the validation of user input data (check of mandatory fields) is implemented in

JavaScript. The JS Interface component is used to communicate the app core with the JavaScript libraries, for

example enable a JavaScript function to start the scanner. Scanner is the component responsible to scan QR-

Code from TV to start SSF coupling.

AAL-2012-5-200 D4.1

 Page 14 of 25

4.2 GeTVivid - Web application

Basically the mobile application is free of the strict limitations of the HbbTV client, as they are specified so far in

the HbbTV V1.1 standard. Nevertheless it sticks to some of this limitation, for example no usage of HTML5 and

no other script languages rather than JavaScript. The reason for this decision is that the mobile client, as a

second-screen-device for the TV, should have an equal appearance to the user. Furthermore both clients need

to provide a synchronized interaction. To meet this requirement it is necessary to keep the conception and

architecture as well as the used technologies on both clients similar. The web application for the mobile client

is build with standard web development techniques like HTML (V4.01) and CSS. Additional functions are

realized in JavaScript.

The web application hosted on the server (demo.getvivid.eu/mobile) provides all functions and content for

both clients. But in order to prevent any hassle for the elderly people with the complicate usage of a standard

web browser on the mobile device, the web client is embedded in a native Android app. This way the mobile

client appears - despite of its web application core - as a “normal” App, providing the common “app-like” user

experience.

4.2.1 Mobile client and HbbTV client - A collaborative project

Since both system clients follow the same hybrid approach, it is possible to share common components, like

most of the graphic content, all backend libraries and some JavaScript libraries, containing common

functionality. While this approach establishes the necessity of a very synchronise collaborative way of

development for both clients, there are still some differences between them, due to the different hardware

resources and usability concepts of both devices.

4.2.2 Design of the graphic user interface

The design of the graphic user interface took place under the lead of the project partner PLUS. The basic

concepts and designs were elaborated during several collaborative workshops. The results were worked out in

a sophisticated stile guide. The stile guide describes all important information needed for the technical

implementation of the graphic user interface. Due to the differences between TV and mobile client it is divided

in two slightly different versions, one for each client. Following some examples to elucidate the major

differences in the GUI implementation.

AAL-2012-5-200 D4.1

 Page 15 of 25

Figure 7: Start screen of the HbbTV client

Figure 8: Start screen on the mobile device

AAL-2012-5-200 D4.1

 Page 16 of 25

Basically all pages have a slightly different format on both devices due to the different display resolutions and

aspect ratios of the screens (1280x720/16:9 on HbbTV vs. 2560x1600/16:10 on mobile) and the “scene footer”,

which shows up at the bottom of all pages on the TV client, is not implemented for the mobile version, because

this is one of the TV specific implementations not applicable for the mobile device.6 Anyway the GUI is

designed in a manner that this differences are not much attracting the attention of the user in order to reach a

“mirror-like” effect on both devices especially while working on both devices in parallel.

A major difference between the clients UI is the highlighting of onfocus GUI elements and the corresponding

KeyEvent handlers on the TV. In order to emulate a cursor which can be navigated by the arrow key of the

remote control. Because of the direct touch interaction of the mobile device this kind of highlighting is not

needed. Therefore this difference requires a completely different kind of implementation for all GUI actions.

For details of the implementation please refer to Section 4.2.3.

The same is applicable for all kinds of text or number inputs. Both clients using completely different types of

keyboards. For the technical implications of this difference, please refer to Section 4.2.3.3. The following screen

shots of both clients will exemplify the differences in the appearance of the user interface.

Figure 9: Keyboard of the HbbTV client

6 For details please refer to Figure 11 and Section 4.2.3.2.

AAL-2012-5-200 D4.1

 Page 17 of 25

Figure 10: Keyboard of the mobile client

4.2.3 Specific implementations for the mobile client

Most of the technical implementation of the mobile client are inherited from TV implementation. An example

of this inheritance is the implementation of dialogs, as described in Section 4.2.4 of deliverable D3.27. The only

difference between these two implementations on mobile device and TV is that in mobile the focus of icons is

excluded. On the other hand in other parts of implementations the differences deviate from each other. The

following sections will explain these major implementation differences for the mobile client in contrast to the

inherited implementations of the TV.

4.2.3.1 Content processor - WebView

The first major differences between TV and mobile application is, how to view the web pages and resources

from the server on the client. As already mentioned in Section 4.1, the native android WebView component

as part of the android.webkit is used to load and display the index.html page of the GeTVivid

application, once the app is started on the mobile device, whereas on the TV a specific HbbTV browser is used

for this task. Although both browser components basically do the same, WebView is yet free of the strict

limitations defined by the standard HbbTV 1.1 standard. Therefore it was necessary to build the whole

GeTVivid application within these strict HbbTV limitations and adapt it afterwards to more liberal mobile

browsers.

7 See GeTVivid deliverable D3.2 - TV Client (p. 22)

AAL-2012-5-200 D4.1

 Page 18 of 25

4.2.3.2 General interface interaction and navigation

While general the conception of the navigation itself, namely SceneManager, is inherited from the HbbTV

implementation, the way of interface interaction within the scenes (remote control vs. touch display) is also

one of the major differences between the two clients. On the mobile device touch interaction is used to control

the hole application, whereas on TV the navigation is achieved by using the arrow keys of the remote control.

In technical terms, this means on the mobile the onclick() JavaScript function is used, whereas the

doclick() function is used in TV , which is part of specific HbbTV JavaScript libraries.

initHeader(definition)
initFooter(definition)
addHandlers(definition)

SceneManager

Scene1 Scene2 Scene3

initHeader()
initFooter()

initHeader()
initFooter()

initHeader()
initFooter()

addHandlers(callback)

KeyEvent

oninput()

callback()

Figure 11: SceneManager implementation8

4.2.3.3 Virtual touch keyboard

In the mobile client the native virtual touch keyboard is used whenever the user is asked to enter text or

numbers. This is not the case in TV. Since there is no such a feature available, an individual application

keyboard was implemented for the TV to satisfy the GeTVivid specifications. This major difference entail

different ways of implementation for data inputs, which will be explained in the following sections.

4.2.3.4 Input fields

Although the actual processing of data inputs is the same on both clients, makes the use of different keyboards

a different kind of graphical representation necessary. So the diagram in Figure 17 of deliverable D3.2 is valid

also in mobile implementation, except that the show, addCharcter, showKeyboard functions are not

implemented on mobile.

8 From: GeTVivid deliverable D3.2 - TV Client (p. 11) - Please note that the initFooter() functions are not

implemented for the mobile client.

AAL-2012-5-200 D4.1

 Page 19 of 25

show()
add(character)
remove()
finalize()
setText()

element : HTMLElement
onChange : functon
onComplete : function

Input

getCurrent() : Input
createInput(element) : Input
showKeyboard()

SceneManager

Scene

createInput()

new Input()
add()

remove()
finalize()

show()
setText()

Figure 12: Input method implementation using facade pattern9

On the mobile client, text input fields are realised as separate popup windows containing only the input field

and an action button to close the window. The action button is also to start processing the text entered. Each

input field is registered once it is created to listen to incoming SSF messages coming from TV to mobile. In

difference the TV depends on Hide function of the keyboard to start processing the text to the other side.

Similar to the TV there are also two different screens used for inputs on the mobile client, one for text and

other for date, with date input realized as a dropdown list of possible numbers resp. dates. The following two

figures will give an example of both input methods.

9 From: GeTVivid deliverable D3.2 - TV Client (p. 22)

AAL-2012-5-200 D4.1

 Page 20 of 25

Figure 13: Input box and native keyboard of the mobile client

Figure 14: Date input of the mobile client

AAL-2012-5-200 D4.1

 Page 21 of 25

4.2.3.5 Scrolling

Scrolling of DIV item lists on TV is described in detail on Section 4.2.5.1 and 4.2.5.2 of deliverable D3.4.10 While

the implementation of DIV item lists is basically the same on the mobile client, the scrolling of the lists items is

implemented in a completely different way by using the CSS feature overflow-y: scroll. This feature

allows the user to scroll all lists within the app by the common touch gestures. The following code examples

illustrate the way of implementation of scrolling for the mobile client.

The items that need to be scrolled have the CSS class .mobileframe which allows them to be scrolled by

touch action:

.mobileframe {

 overflow-y: scroll;

 display: none;

 display: block;

}

The following html code shows how to scroll messages within the organizer section of the application:

<div id="organizer-messages">

 <div class="items mobileframe" onscroll="scrollMobile(this);"></div>

 <div class="hidden-spaceless scroll-bar">

 <div class="scroll-thumb"></div>

 </div>

</div>

The event onscroll will be cached whenever a list is being scrolled and it will call the scrollMobile()

function to update the look and feel of the list in the same way as on the TV.

Following code shows the mobile adaption of scrollThumb and scrollBar as described for the TV client

in deliverable D3.2.11:

if(element.scrollHeight <= element.clientHeight) {

 if (getvivid.util.hasClass(element, "mobileframe"))

 {

 getvivid.util.removeClass(element, "mobileframe");

 element.removeAttribute("onscroll");

 }

 hide(scrollBar);

} else {

 show(scrollBar);

 if (!getvivid.util.hasClass(element, "mobileframe"))

 {

 getvivid.util.addClass(element, "mobileframe");

 if (!amount || (amount && amount != -1)) {

 element.setAttribute("onscroll", "scrollMobile(this)");

 }

 }

10 See GeTVivid deliverable D3.2 - TV Client (p. 26ff)

11 See GeTVivid deliverable D3.2 - TV Client (p. 26ff)

AAL-2012-5-200 D4.1

 Page 22 of 25

 var rate = scrollBar.clientHeight / element.scrollHeight;

 var thumbHeight = rate * element.clientHeight;

 var thumbMargin = Math.max(0, rate * element.scrollTop - 8);

 scrollThumb.style.height = thumbHeight + "px";

 scrollThumb.style.marginTop = thumbMargin + "px";

}

4.2.3.6 JavaScript Interface

The JavaScript interface is the interface between the core of application implemented in Java and the

additional JavaScript code used, for example initializing the scanner as decried in the next section.12 Once

the user press the scanner icon in the app a JavaScript function will be called which will initialize the

scanner implemented in Java. This way the JavaScript interface establishes a kind of tunnel between the two

components. The same interface is also used to connect the native Android back-button to specific JavaScript

functions, like “go back to previous point of the application”. The usage of the native menu-button function is

implemented in the same way. In general the JavaScript interface is always used whenever to access the

peripheral hardware resources of the mobile device.

4.2.3.7 Scanner

The scanner is an exclusive implementation of the mobile client. It is a native Java implementation used to scan

QR-Code from the TV screen to start the SSF coupling. The Scanner is initialized using the JavaScript interface,

as explained in the previous section. Once the scanner component is initialized it can be handed as part of the

app itself in order to use the back camera of mobile device to scan and process the QR-Code from the TV.

4.2.4 Backend communication

For the implementation of the backend communication there are no specific differences between the clients.

Both are using the same libraries client library provided by PLUS - used to access web service provided

by the Amiona backend for instance to access database (inserting/editing user offers)

4.2.5 Synchronisation of the clients

4.2.5.1 The coupling process

For the coupling of the both clients, mobile and TV, the Second-Screen-Framework framework provided by IRT

is used. A common JavaScript library is used in both clients to access the framework.

The Process of coupling starts once the user press coupling function on TV which shows a unique QR-Code

containing information about the device as well as URL to connect to. On the other hand, within the mobile

client the user starts the scanner by clicking scanner icon, which initialize the scanner responsible to scan the

QR-Code displayed on TV. Using the scanned data the mobile client will be connected through the SSF server

with the TV. The SSF server stores the connection between the two devices by ID. Once the connection is

established both client can start exchanging messages via the SSF. These messages are used to keep the clients

synchronized.

12 Refer to Figure 6: Layer diagram of the mobile client

AAL-2012-5-200 D4.1

 Page 23 of 25

4.2.5.2 The synchronization process

Once the coupling is established the SSF server is able to forward messages from one device to the other. The

messages communicated between the two clients are of the following types: PATH, SELECT and INPUT.

 The message of type PATH informs the other client about the pages opened.

 The SELECT message type is to inform the other client once an item within an opened page is

selected or unselected, for example the implementation of a radio button.

 The INPUT type is to synchronize text entered by the user to the other client, for example text fields.

Assuming that the GeTVivid platform is running on both devices, the following description will illustrate the

synchronization process for the message type PATH.

Figure 15: Synchronization process mobile-to-TV

Starting with a common input, like pushing the GeTVivid logo (“Home-Button”) on the mobile device for

instance. This input navigates from any point of the application back to the starting page. In terms of a web

application this means, the mobile client will request the ”../mobile/index.html” page from the

GeTVivid application server.

Beside this standard action, a SSF message of type PATH and value index.html will be sent to SSF server

using the SSF Communication Library (II.). As the SSF server knows the corresponding receiver of the message,

namely the coupled TV, the message is directly forwarded to this TV (III.). On TV client, the message will be

forwarded to a consumer based on message type (IV.). For a message of type PATH the action of the consumer

will be to open the page of the value included in the message, in this example it is index.html (V.).

AAL-2012-5-200 D4.1

 Page 24 of 25

Actions done on consuming messages of type SELECT are to select an item within the current opened page. In

this case the value of the message is the ID of the item to be selected or unselected. For messages of type

INPUT, the value is a text entered by the user in an input text field item in addition to the ID of that item. The

action done on consuming messages of type INPUT is to update the item text value with the text received

using the ID included in the message.

AAL-2012-5-200 D4.1

 Page 25 of 25

5. OVERALL CONCLUSION

This document described and explained the conception and the architecture of the mobile client as a second-

screen-service for the GeTVivid platform. In this role, the mobile client was meant to be an additional remote

control device, as well as a standalone application for the usage of the GeTVivid platform.

Several end-user tests during the project time showed that the conception of the system worked out very well

for both tasks. But the test, as well as the individual experiences during this time, showed also, that among the

potential end-users the acceptance of modern mobile devices like tablet computers in general is not that low

as assumed in the very beginning of the project. This fact makes the TV as a “key channel” and the

simultaneous usage of both devices in a synchronized way, much less crucial points for the end-user

acceptance as expected. As a conclusion of these findings, the usage of the mobile client as a second

independent device of the system gets more on focus for further developments. Consequently the next steps

of development could be:

 Development of a GeTVivid application for mobile devices, without the restrictions of the HbbTV 1.1

standard, even if this forecloses the mirror-like synchronization between TV and mobile device. Such a

mobile client, as a native app or still as a re-designed hybrid app, could fully exploit the powerful

hardware resources of modern mobile devices, which will lead to better user experience and

enhanced expectance of the whole GeTVivid platform.

 Porting the current Android version of the mobile client to other mobile platforms like iOS or Windows

Mobile, in order to make the system reachable for a broader range of hardware devices and end-user.

