
 

 

Project acronym: Go-myLife 

Project full title: Going on line: my social Life 

 

AAL Joint Programme 

 

Call for Proposals AAL-2009-2-089 

 

D3.1 Initial Platform Architecture and Design 

 

Author: Idoia Olalde (Andago) 

Version: 1.0 

Date: 31/03/2011 

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: : 31/03/2011 Page 2 / 28 

  

 

Deliverable Number: D3.1 

Contractual Date of 
Delivery: 

31/03/2011 

Actual Date of 
Delivery: 

31/03/2011 

Title of Deliverable: D3.1 Initial Platform Architecture and Design 

Dissemination Level: Public  

WP contributing to the 
Deliverable: 

WP3 

Author(s): Andago 

Participant(s): ATOS, ICCS 

 

History 

Version Date Author Comments 

0.1 09/03/2011 Idoia Olalde (Andago) Draft version 

0.2 14/03/2011 George Karkalis (ICCS) Draft version 

0.3 31/03/2011 A.McDonough (ATOS) Draft version 

1.0 31/03/2011 Idoia Olalde (Andago) Final version 

 

Approval and Sign-off 

Date Name Sign-off                             

31/03/2011 Idoia Olalde (Andago) approved 

   

   

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: : 31/03/2011 Page 3 / 28 

  

 

Abstract 

This document contains the initial architecture design of the Go-myLife platform. It 
also summaries the functionalities that Go-myLife will have as social network. 

It describes the different components that compose the overall system: 
LibreGeoSocial framework as the Social Network Engine, the Social Connector 
Manager and the specific APIs to connect with external social networks such as 
Facebook and Twitter and the Web Application through which the user will interact 
with Go-myLife. 

 

Keywords 

Architecture, Design, Functionality, Social Network Engine, Social Network Manager, 
LibreGeoSocial, Web application 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: : 31/03/2011 Page 4 / 28 

  

Table of Contents

1 Introduction ................................................................................................................. 7 

1.1 Summary ............................................................................................................... 7 

1.2 Role of this deliverable ......................................................................................... 7 

2 Design considerations ................................................................................................. 8 

2.1 Technical requirements ......................................................................................... 8 

2.1.1 Creating a profile ............................................................................................... 8 

2.1.2 Uploading photos ............................................................................................... 8 

2.1.3 Uploading videos ............................................................................................... 8 

2.1.4 Finding family and friends ................................................................................. 8 

2.1.5 Sharing content .................................................................................................. 8 

2.1.6 Groups ................................................................................................................ 9 

2.1.7 Messages ............................................................................................................ 9 

2.1.8 Connection to other social networks .................................................................. 9 

2.1.9 GeoLocation ....................................................................................................... 9 

2.2 Other requirements ............................................................................................... 9 

2.2.1 Trust and Privacy ............................................................................................... 9 

2.2.2 Scalability .......................................................................................................... 9 

2.2.3 Performance ..................................................................................................... 10 

2.2.4 Security ............................................................................................................ 10 

2.2.5 Extensibility ..................................................................................................... 10 

2.2.6 Accessibility and Usability .............................................................................. 10 

2.3 Selected technologies and social network integration approach ........................ 11 

2.3.1 Social network engine: LibreGeoSocial .......................................................... 11 

2.3.2 Social Networks ............................................................................................... 12 

2.3.2.1 Facebook .......................................................................................... 12 

2.3.2.2 Twitter .............................................................................................. 15 

2.4 Architecture evolution in Go-myLife: iterative process ..................................... 17 

3 Architecture design ................................................................................................... 18 

3.1 Overall design ..................................................................................................... 19 

3.2 Go-myLife subsystem and components .............................................................. 20 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: : 31/03/2011 Page 5 / 28 

  

3.2.1 Go-myLife Server Core ................................................................................... 20 

3.2.1.1 Rest Services .................................................................................... 20 

3.2.1.2 Layer Manager ................................................................................. 23 

3.2.1.3 Export Manager ............................................................................... 23 

3.2.2 Social Connector Manager ............................................................................... 24 

3.2.3 Web application ............................................................................................... 25 

4 Conclusion ................................................................................................................ 28 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 6 / 28 

  

Table of Illustrations

Illustration 1 Go-myLife Platform Iterative Design ..........................................................16 

Illustration 2 Go-myLife schema .......................................................................................17 

Illustration 3 Go-myLife architecture ................................................................................18 

Illustration 4 Export Manager ............................................................................................23 

Illustration 5 Social Connector Manager ...........................................................................24

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 7 / 28 

  

1 Introduction 

1.1 Summary 

The objective of this work package is to create the basic architecture and design for the 

Go-myLife platform. Within its lifetime which will be mainly segmented in two 

iterations, this activity, in the first cycle, will work towards a preliminary definition of 

the Go-myLife architecture based on the requirements gained from the use case 

analysis. 

 

1.2 Role of this deliverable 

The role of this deliverable D3.1 Initial Platform Architecture and Design is the 

definition of the initial architecture of the Go-myLife system. During this phase, we 

have identified the components, design details of the implementation and integration of 

the elements that make up the final platform. 

All the tasks carried out in the WP2 related to the identification of users' needs will be 

reflected in the work of the WP3. This deliverable summaries the study of the technical 

requirements carried out during the WP2 and describes the different components and 

subsystems that take part in the overall architecture. A description of the requirements 

agreed and decisions made during the task T2.5 Technical Requirements' Analysis and 

reflected in its deliverable D2.4 Technical Requirement's Analysis will be included. 

This initial design will be the base for the WP4, where the development of the 

prototype will be carried out, and WP5, where Go-myLife community will be built 

using the core platform services and capabilities. 

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 8 / 28 

  

2 Design considerations 

2.1 Technical requirements 

This section outlines the required technical functionality of Go-myLife and what is 

considered essential functionality in social networks for the intended beneficiaries. The 

functionality described in this section is generally available within social networks and 

as such may already be familiar to the user. We present below a brief description of 

each function. If you require more information please refer to the deliverable D2.4-

Technical Requirements Analysis, where you will find a more detailed description. 

2.1.1 Creating a profile  

Go-myLife will provide the user profile creation with the facility to allow users to 

describe themselves, show their interests and friends. It should also allow a profile 

picture or video to be uploaded. 

2.1.2 Uploading photos  

The functionality should provide an “Image Gallery” where the user can upload 

photographs that have been taken from a mobile or are stored in a computer. It should 

allow the possibility to organise photos by title and/or date. It will allow photographs to 

be tagged with date, description, and title as well as geolocation information. 

Photographs may be shared with other members of the social network provided they 

meet privacy parameters set by the user.  

2.1.3 Uploading videos 

Go-myLife will provide a “Video Gallery” where the user can upload videos from a 

video camera in a mobile phone and also videos stored on computer. The user may 

organise the videos by title and date. Tagging useful information to the video such as 

title, description, date and place will be required.  

2.1.4 Finding family and friends 

Go-myLife will include the ability to find friends, family members or other people that 

the user knows within Go-myLife or on an external social network. To find family or 

friends the user must enter an agreed search criteria. The search criteria may consist of 

name, email address, company name, school or university.  

If a friend or family member is found, the person found should first accept the user’s 

request before being added to the user’s friends list.  

2.1.5 Sharing content  

Photographs, videos and public content can be uploaded to the user profile. This 

functionality will permit the user to share the content by setting privacy settings. 

Privacy settings permit access to the user only, selected friends, selected groups, all 

user’s friends, friends of friends, Go-myLife users and social network users.  



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 9 / 28 

  

The user may send a URL to members of Go-myLife to share content or allow external 

users via a security token. 

2.1.6 Groups  

Go-myLife users may create special interest groups. The type of group may be hidden, 

private or public. 

Groups may share text, image, music and video information and specify privacy 

settings for access. 

2.1.7 Messages 

Go-myLife users may exchange messages with other users. The message type 

supported will be wall, status, private and group. 

2.1.8 Connection to other social networks  

Go-myLife will have the ability to connect to other social networks via there API´s. 

The functionality will be dependent on the public API provided. Common features of 

interconnecting social networks include status upload, share content, messaging and 

finding friends. This functionality is described in greater detail in chapter 2.3.2 of this 

document. 

2.1.9 GeoLocation 

Go-myLife will able to track the location of users and store geolocated information for 

the different types of content. Information will be provided as to where friends and 

family are located in the near vicinity. 

2.2 Other requirements 

This section outlines other requirements which are technical by nature but whose focus 

is not the direct interaction with the user but impacts indirectly.  They are requirements 

that are necessary to Go-myLife for its correct functioning in a social network 

environment.  

2.2.1Trust and Privacy 

Go-myLife will be based on a trust on-line Social Network, that users can develop new 

relationships and share information without the fear of been cheating by fake users or 

malicious information. The users will have guaranteed their privacy and will have the 

possibility to define the privacy degree of their information. They will have the option 

to select what they want to share and for whom (visibility of their information). 

2.2.2Scalability 

One important thing that needs to be taken into account when designing and developing 

a new on-line social network is the platform scalability. Being able to accommodate a 

growing demand of new users without the need of redesigning the platform is 

something rely important and will be take into account in the design and development 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 10 / 28 

  

of the Go-myLife platform. The platform will be designed to be easily scaled up or 

scaled down without the need of new development. 

2.2.3 Performance 

Go-myLife should provide a quality of service adequate for its intended use as a social 

network for elderly users. It should have a response time which is deemed reasonable 

for a non-critical system and which does not impede normal use.  

The Go-myLife platform should not present the user with technical problems and give 

expected results at all times. It should be functionally reliable and not be prone to 

unexpected behaviour.  

2.2.4 Security 

Go-myLife should take on board the recommendations made by Cyber Security 

Standards designed to improve security and minimize the risk of cyber security attacks. 

Relevant standards such as ISO27001 will be adhered to assuring that Go-myLife users 

can rely on confidentiality, integrity and availability of their information. Incorporating 

the recommendations of best practices is seen as essential to provide a long term 

solution and ultimately certification by an accredited body. 

2.2.5 Extensibility 

Extension to Go-myLife can be through the addition of new functionality or through 

modification of existing functionality. There should be little impact on the overall 

structure of the Go-myLife project. It should be possible to add new services to the 

services already provided without an impact on the architecture.  

Go-myLife will conform to relevant standards thus enabling the system to be extended 

as well as being extended to incorporate other social networks. The user should not be 

restricted to a social network in particular but be able to link to wider communities 

using the same Go-myLife interface. 

2.2.6 Accessibility and Usability 

In human-computer interaction, computer accessibility refers to the accessibility of a 

computer system to all people, regardless of disability or severity of impairment. It is 

an important concern for both software and web designers. They have to consider 

standards in order to produce applications that enable the use of a computer or a mobile 

device by every person, independently of any possible disability, and any special device 

(Assistive Technology) that they have to use. 

Go-myLife will be designed around the interests and requirements of elderly people 

taking into account their usability and accessibility requirements. It will follow the 

WAI-W3C accessibility guidelines (WCAG 2.0) and ISO 9241 for meeting those 

requirements. 

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 11 / 28 

  

2.3 Selected technologies and social network integration 
approach 

During the WP2, a deep analysis of existing social networks engines was carried out in 

order to evaluate them and select the one that better satisfies the functionalities 

expected for the Go-myLife platform. 

We also evaluated some social networks in order to decide which of them will be 

connected to the Go-myLife platform. Our decision was based on the functionalities 

they offer through their APIs as well as their social impact in the elderlies' context. 

Taking into account these aspects, Facebook and Twitter were selected to integrate in 

the first version of Go-MyLife. 

2.3.1 Social network engine: LibreGeoSocial 

After our analysis of the different social network engines, LibreGeoSocial was selected. 

In the following tables, there is a comparison between the analyzed social network 

engines. 

The Table 1 collects how the different engines fulfill the basic expected functionalities 

of a social network. Basically, all of them cover all the features.  

 

 LIBREGEOSOCIAL LIFERAY ELGG PINAX 

Access to videos yes  yes yes yes  

Messaging 

service 

comments yes yes yes  

Share pictures yes  yes yes   

Blog   yes yes yes  

Communities Groups based on 

gelocation and social 

network information 

User groups, 

communities, 

organizations 

yes yes 

Table 1 Comparison of the basic functionalities of a social network 

 

The Table 2 summaries the features expected for Go-myLife, analyzing the integration 

of external sources of information and social networks and the adaptation to the 

requirements of the elderly in terms of accessibility and usability. 

 

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 12 / 28 

  

 LIBREGEOSOCIAL LIFERAY ELGG PINAX 

Connection to other SN yes  yes yes  

Plug-ins, add-ons yes yes yes  yes  

Accessibility   Theme- 

dependant 

no   

Usability   yes  yes   

Multichannel access yes yes  no 

Geolocated info yes no  no no  

Table 2 Comparison of features expected in Go-myLife 

 

Go-MyLife will be a platform based on mobility and location awareness, not only 

focused on providing location based information but taking this step further by 

providing greater contextual awareness of whom and what is around the user. This will 

then allow serendipitous meetings with friends and family, help users to find out 

interesting information about places, add their own comments for the benefit of others, 

and help them to have greater security, knowing that it will be easier for them to get 

help and support when they get into difficulty. 

For this reason, geolocation feature is a key aspect in the selection of the social network 

engine and among all the options, only LibreGeoSocial manages user's information as 

nodes with geolocated information. Some developments will be necessary to be done in 

order to satisfy the functionalities but it is considered more efficient to integrate these 

changes in LibreGeoSocial than integrating geolocated information in any other social 

network engine. LibreGeoSocial is only the engine of the platform which manages the 

information. Above it, it will be developed web applications which will have all the 

expected functionalities with a usable and accessible interface. 

2.3.2 Social Networks 

The API of each social network must be prepared to interact with the Go-myLife 

platform, developing a module (a connector) in the middle between Go-myLife and the 

specific social network (Facebook, Twitter, etc.). 

In order to satisfy this requirement, a study of the API has been done. 

2.3.2.1 Facebook 

The Facebook Platform is divided into the following concepts: 

 Social Plug-ins: embeddable HTML code that can be integrated in your website to 

add social features. The plug-ins are personalized for all users who are currently 

logged into Facebook, even if they are visiting your site for the first time.  

http://developers.facebook.com/


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 13 / 28 

  

Most Social Plug-ins can be integrated with your site by simply including the 

iframe tag for the plug-in within your page. Some of them require the use of 

XFBML (eXtended Facebook Markup Language). XFBML is a set of XML 

elements that can be included in your HTML pages to display Social Plug-ins. 

When your page is loaded, any XFBML elements found in the document are 

processed by the JavaScript SDK, resulting in the appropriate plug-in being 

rendered on your page. 

The plug-ins are: Like Button, Activity Feed, Recommendations, Like Box, 

Login Button, Registration, Facepile, Comments and Live Stream. 

 Apps on Facebook: Apps on Facebook.com are web applications that are loaded 

in the context of Facebook. You can build your app using any language or tool 

chain that supports web programming, such as PHP, Python, Java or C#. 

Apps on Facebook.com are loaded into a Canvas Page. A Canvas Page is quite 

literally a blank canvas within Facebook on which to run your application. You 

populate the Canvas Page by providing a Canvas URL that contains the HTML, 

JavaScript and CSS that make up your application. When a user requests the 

Canvas Page, the Canvas URL is loaded within an iframe on that page. This 

results in the application being displayed within the standard Facebook chrome. 

Once the application is created, Facebook provides Social Channels to increase 

the popularity of the application. Some of them are automatically created: the 

application is added to the App Dashboard or Game Dashboard, a bookmark is 

created to enable users to easily navigate and a usage story is published to notify 

user’s friends that he or she has started to use the application. 

The application can also publish directly to a user's News Feed and send 

Requests to their friends through the specific Dialogs explained in the next 

point. 

There is also the possibility to customize page tabs. 

 Dialogs: Dialogs provide a simple, consistent interface to display dialogs to users. 

Dialogs do not require special user permissions because they require user 

interaction. Dialogs can be used in any type of application, whether on 

Facebook.com, a website, or a mobile application. 

You can integrate Dialogs into your application by constructing the URLs or by 

using a helper method in one of the Facebook Platform SDKs. 

Dialogs are all built to seamlessly run in a variety of display contexts (page, 

popup, iframe) on both the web and mobile. 

The existing Dialogs are: Feed Dialog, Friends Dialog, OAuth Dialog, Pay 

Dialog and Request Dialog. 

 Social Graph: The Facebook core is the social graph that represents people and 

their connections. The Graph API presents a simple, consistent view of the 

Facebook social graph, uniformly representing objects in the graph (e.g., people, 

photos, events, and pages) and the connections between them (e.g., friend 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 14 / 28 

  

relationships, shared content, and photo tags). You can use this API to read data, 

search, publish and delete objects. 

Every object in the social graph has a unique ID. You can access the properties 

of an object by requesting https://graph.facebook.com/ID. 

All objects in Facebook can be accessed in the same way: Users, Pages, Events, 

Groups, Applications, Status messages, Photos, Photo albums, Profile pictures, 

Videos, Notes, Checkins. 

All of the objects in the Facebook Social Graph are connected to each other via 

relationships (called connections). You can examine the connections between 

objects using the URL structure: 

https://graph.facebook.com/ID/CONNECTION_TYPE. 

All these requests return a response in JSON format. 

 Other APIs: Other APIs exist in Facebook to add extra functionalities: 

o Credits API: The Facebook Credits API enables a user to use credits as a 

method for purchasing digital and virtual goods within your application. 

o Ads API: The Facebook Ads API lets you create and manage your own 

ads on Facebook programmatically, without using the Facebook 

Advertising Manager tool. 

o Chat API You can integrate Facebook Chat into your Web-based, desktop, 

or mobile instant messaging products. Your instant messaging client 

connects to Facebook Chat via the Jabber/XMPP service. 

 Open Graph Protocol: The Open Graph Protocol enables you to integrate your 

web page into the social graph using Open Graph tags. If your web page 

represents real-world entities, through the Like Button, they can be directly 

included in the "Likes and Interests" section of the user's profile. With that 

feature, your web page behaves as a Facebook Page: it sends updates to the 

user, it appears in the same places that the Facebook pages show up around the 

site (e.g. search) and you can target ads to people who like your content.  

 SDKs: Facebook provides Software Developers’ Kits (SDKs) for different 

platforms: 

o iOS (Objective-C): https://github.com/facebook/facebook-ios-sdk 

o Android (Java): https://github.com/facebook/facebook-android-sdk 

o PHP SDK: https://github.com/facebook/php-sdk/ 

o JavaScript SDK: https://github.com/facebook/connect-js 

o C# SDK: https://github.com/facebook/csharp-sdk 

o Python SDK: https://github.com/facebook/python-sdk 

o The community has also developed other libraries such as the GWT 

Facebook SDK: http://code.google.com/p/gwtfb/ 

https://github.com/facebook/facebook-ios-sdk
https://github.com/facebook/facebook-android-sdk
https://github.com/facebook/php-sdk/
https://github.com/facebook/connect-js
https://github.com/facebook/csharp-sdk
https://github.com/facebook/python-sdk
http://code.google.com/p/gwtfb/


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 15 / 28 

  

With these SDKs, developers can build their own applications (mobile or 

native) and integrate with Facebook. 

 FBL (Facebook Query Language): Facebook enables the use of a SQL-style 

interface to query the data exposed by the Graph API. It provides for some 

advanced features not available in the Graph API, including batching multiple 

queries into a single call. 

   Authentication 

Facebook Platform uses the OAuth 2.0 protocol for authentication and authorization. It 

has different mechanisms to use within a website, mobile and desktop applications. 

Facebook Platform supports two different OAuth 2.0 flows for user login: server-side 

(used whenever you need to call the Graph API from your web server) and client-side 

(used when you need to make calls to the Graph API from a client, such as JavaScript 

running in a Web browser or from a native mobile or desktop application) 

Regardless of the flow you utilize, the implementation of the OAuth 2.0 involves three 

different steps: user authentication, application authorization and application 

authentication. User authentication ensures that the user is who they say they are. 

Application authorization ensures that the user knows exactly what data and capabilities 

they are providing to your app. Application authentication ensures that the user is 

giving their information to your app and not someone else. Once these steps are 

complete, the application is issued a user access token that you enable the access to the 

user's information and to take actions on their behalf. 

2.3.2.2 Twitter 

The Twitter API currently consists of 3 APIs: 

 REST API: The Twitter REST API methods allow developers to access core 

Twitter data. This includes update timelines, status data, and user information. 

 Search API: It is also a REST API that due to history remains separately. The 

Search API methods give developers methods to interact with Twitter search and 

trends data. 

 Streaming API: The Streaming API provides near real-time high-volume access to 

Tweets in sampled and filtered form. 

o Streaming API: Public statuses from all users, filtered in various ways: By 

userid, by keyword, by random sampling, by geographic location, etc. 

o User Streams: Nearly all data required to update a user's display. Requires 

the user's OAuth token. Provides public and protected statuses from 

followings, direct messages, mentions, and other events taken on and by 

the user. 

o Site Streams: Allows multiplexing of multiple User Streams over a Site 

Stream connection. Once more than a handful of User Streams 

connections are opened from the same host or service, Site Streams must 

be used. 

http://apiwiki.twitter.com/w/page/22554648/FrontPage


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 16 / 28 

  

Methods to retrieve data from the Twitter API require a GET request. Methods that 

submit, change, or destroy data require a POST. A DELETE request is also accepted 

for methods that destroy data.  

The documentation describes which formats are available for each method. The API 

presently supports the following data formats: XML, JSON, and the RSS and Atom 

syndication formats, with some methods only accepting a subset of these formats. 

The community has created numerous Twitter API libraries. 

There are also other features: 

 Twitter Button: The Tweet Button is a small widget which allows users to easily 

share your website with their followers. There are three ways to add the Tweet 

Button to your webpage: using JavaScript, using an iframe or even build your 

own. 

 @anywhere: It is a framework for adding the Twitter experience anywhere on the 

web. Rather than implementing APIs, site owners need only drop in a few lines of 

JavaScript. Developers can use @anywhere to add Follow Buttons, Hovercards, 

linkify Twitter usernames, and build deeper integrations with "Connect to 

Twitter." 

 Authentication 

Although Twitter supports different mechanism for authentication (out-of-band/PIN 

code authentication, xAuth), it recommends the use of OAuth. 

The OAuth request cycle is roughly: 

 Retrieve a request token 

 Request user authorization by sending the user to a Twitter.com login page 

 Exchange the request token for an access token 

The OAuth method will act in different ways depending on the status of the user and 

their previous interaction with the calling application: 

1. If the user is logged into twitter.com and has already approved the calling 

application, the user will be immediately authenticated and returned to the 

callback URL. 

2. If the user is not logged into twitter.com and has already approved the calling 

application, the user will be prompted to login to twitter.com then will be 

immediately authenticated and returned to the callback URL. 

3. If the user is logged into twitter.com and has not already approved the calling 

application, the OAuth authorization prompt will be presented. Authorizing users 

will then be redirected to the callback URL. 

4. If the user is not logged into twitter.com and has not already approved the calling 

application, the user will be prompted to login to twitter.com then will be 

presented the authorization prompt before redirecting back to the callback URL. 

 

http://dev.twitter.com/pages/libraries


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 17 / 28 

  

2.4 Architecture evolution in Go-myLife: iterative process  

The design of the architecture will be an iterative process: analyze user’s needs, design 

the architecture, implement a prototype, test the different modules and perform trials 

with real end-users which will give us feedback to a better design of the platform, 

identifying its weak points and make it more useful and adapted for the user. This cycle 

will be repeated within the life of Go-myLife project. 

With this approach the elderly become the center of the design and Go-myLife will 

result in a platform designed for them. 

 

Illustration 1 Go-myLife Platform Iterative Design 

 

This deliverable, D3.1 Initial Platform Architecture and Design, will be based on the 

deliverable D2.5 Technical Requirement's Analysis. D2.5, in its first version, collects 

the general functionalities expected for Go-myLife. With the overall architecture design 

defined, we will proceed to the design of the first prototype. The deliverable D3.2 First 

prototype design will describe a more detailed implementation of the platform and the 

client-side application that will be used on the pilots.  

Go-myLife platform will be implemented during T4.1 Platform prototype 1 that will be 

tested in the first version of the pilots. 

A second version of D2.5 Technical Requirement's Analysis will be released once the 

workshops are carried out. In this new version, the functionalities and requirements will 

be updated to adapt them to the real needs of the end-users. 

With these considerations and the feedback gained in the early pilots, the architecture 

designed will be refined. This iteration will result in the deliverables D3.3 Final 

Platform Architecture and Design and a second prototype will be developed in T4.2 

Platform prototype 2 to be tested in a new version of the pilots. 

With this iterative approach, we try to reduce the high risk associated with research 

projects where several iterations allow a better control about the anticipated progress 

versus achieved progress to be better controlled by applying corrective measures. 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 18 / 28 

  

3 Architecture design 

This part of the document defines the architecture of the project, focused on the 

decomposition of the design of functional or logical components that expose well-

defined communication interfaces. 

Go-myLife will provide a platform where users can easily interact with other social 

networks. For that reason, Go-myLife will be based on a social network engine that 

integrates content from existing social networks and on which specific services 

designed for elderly people will be offered.  

The following figure represents Go-MyLife ecosystem: 

 

 

Illustration 2 Go-myLife schema 

The Illustration 2 shows schematically the architecture of the project Go-myLife. In the 

core of the system, it will reside the Social Network Engine to manage the platform and 

connect to external sources of information and the Social Connector Manager that will 

connect to the different social networks. Users will access to Go-myLife through a web 

application (mobile or desktop version) that will offered specific services. 

The following sections delve into all the parts of the Go-myLife platform. 

 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 19 / 28 

  

3.1 Overall design 

The deliverable D3.1 Initial Platform Architecture and Design presents a first version 

of the platform architecture of Go-myLife. This first version of the architecture is 

described in greater detail in the deliverable D3.3 Final Platform Architecture and 

Design In Illustration 2, it is shown the reference architecture as a basis for the 

development of the project of Go-myLife. 

Below is a brief description of each of the modules of the architecture. 

 

 

Illustration 3 Go-myLife architecture 

 

 

Go-myLife Server Core: The core of the platform where the logic resides. It will be 

based on the framework LibreGeoSocial. It manages all the user information as 

geolocated nodes through different modules. 

LibreGeoSocial framework can export its data in two different formats through the 

Export Manager: JSON and XML. It offers a REST API to access and manage it. 

It has an external channels aggregator to retrieve information from third-parties (e.g. 

YouTube) and offer it to the user. 

 

Social Connector Manager: This module manages the connection with other social 

networks, integrating this information inside Go-myLife. Different connectors will be 

implemented to connect to the specific APIs of the social networks and interact with 

them to retrieve information and show them in Go-myLife and to upload data directly 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 20 / 28 

  

from Go-myLife to the specific network. In the first version of Go-myLife Twitter and 

Facebook will be integrated 

It offers an interface to facilitate the integration of future social networks. Developers 

will only need to implement the connectors to specific social networks following that 

interface. 

 

Web Application: this component is the client-side of Go-myLife platform. A web 

based application through which the user could update his/her status, share a photo, 

connect to friends, etc. There will be two versions with features and interfaces adapted 

to the respective devices: mobile and desktop version. 

The interface will be specifically adapted to elderly needs taking into account usability 

and accessibility criteria. 

 

3.2 Go-myLife subsystem and components 

3.2.1 Go-myLife Server Core 

The Go-myLife server core will be in charge of Go-myLife social network 

management. Functionalities covered by the server core are: 

 Social network features: 

◦ Users management 

◦ Contents management 

◦ Classified contents management 

◦ Users relationships 

◦ Privacy 

 Geolocation over contents and users in the social network 

 Access to external contents (3
rd

 parties information sources) 

 API to fulfill all the client's needs. 

 Ability to export the information in different formats 

To develop this social core will be used the LibreGeoSocial framework. It is an open 

source framework that allows creating geolocated social networks and exports a REST 

API to manage all the functionalities.  

3.2.1.1 Rest Services 

The rest services exported with the LibreGeoSocial framework will be divided in 

different sections, regarding of the functionality. 

Node management: REST API to cover standard functionalities over the different 

nodes stored in the server. (Nodes = Contents = (user, photo, note, video, audio)) 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 21 / 28 

  

 Change node position 

 Tag a node  

 Remove node tags  

 Add new comment  

 Delete comment  

 Delete a node  

 Get nodes for a layer  

 Change node availability dates 

User Management: REST API to manage the user's information, registration and 

relations with other users.  

 Create new user  

 Modify user  

 Log in  

 Get my data  

 Get user data  

 Delete a user  

 Get friends  

 Get friendship invitations  

 Set user position  

 Near people  

 Near friends  

 Set user status  

 Set user avatar  

 List all users  

 Start relation between users  

 Finish relation between users  

Notes Management: REST API to manage content's notes. 

 Create a new note  

 Get note data  

 Delete a note 

Photos Management: REST API to manage content's photos. 

 Upload a photo  

 Get photo data  

 Get photo image  

 Get photo thumbnail  

 Delete a photo 

Sound Management: REST API to manage content's sounds. 

 Upload a sound  

 Get sound data  

 Get sound file  

 Delete a sound 

http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#change-node-position
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#tag-a-node
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#remove-node-tags
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#add-new-comment
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#delete-comment
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#delete-a-node
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#get-nodes-for-a-layer
http://doc.libregeosocial.org/libreGeoSocial/rest/node.html#change-node-availability-dates
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#create-new-user
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#modify-user
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#log-in
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#get-my-data
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#get-user-data
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#delete-a-user
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#get-friends
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#get-friendship-invitations
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#set-user-position
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#near-people
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#near-friends
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#set-user-status
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#set-user-avatar
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#list-all-users
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#start-relation-between-users
http://doc.libregeosocial.org/libreGeoSocial/rest/user.html#finish-relation-between-users
http://doc.libregeosocial.org/libreGeoSocial/rest/note.html#create-a-new-note
http://doc.libregeosocial.org/libreGeoSocial/rest/note.html#get-note-data
http://doc.libregeosocial.org/libreGeoSocial/rest/note.html#delete-a-note
http://doc.libregeosocial.org/libreGeoSocial/rest/photo.html#upload-a-photo
http://doc.libregeosocial.org/libreGeoSocial/rest/photo.html#get-photo-data
http://doc.libregeosocial.org/libreGeoSocial/rest/photo.html#get-photo-image
http://doc.libregeosocial.org/libreGeoSocial/rest/photo.html#get-photo-thumbnail
http://doc.libregeosocial.org/libreGeoSocial/rest/photo.html#delete-a-photo
http://doc.libregeosocial.org/libreGeoSocial/rest/sound.html#upload-a-sound
http://doc.libregeosocial.org/libreGeoSocial/rest/sound.html#get-sound-data
http://doc.libregeosocial.org/libreGeoSocial/rest/sound.html#get-sound-file
http://doc.libregeosocial.org/libreGeoSocial/rest/sound.html#delete-a-sound


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 22 / 28 

  

Videos Management: REST API to manage content's videos. 

 Upload a video  

 Get video data  

 Get video file  

 Delete a video  

Privacy Management: REST API to manage the privacy over the different contents 

created inside the server.  

 Nodes privacy management 

o Show nodes’ privacy status  

o Permissions change  

 Layers privacy management 

o Show layer’s privacy status  

o Permissions change  

 User privacy management 

o Show user’s privacy status  

o Permissions change  

 Notes privacy management 

o Show note’s privacy status  

o Change note’s privacy  

 Photos privacy management 

o Show photo’s privacy status  

o Change photo’s privacy  

 Sounds privacy management 

o Show sound’s privacy status  

o Change sound’s privacy  

 Videos privacy management 

o Show Video’s privacy status  

o Change Video’s privacy  

 Privacy auxiliary functions 

o Get all available roles  

o Get all available permissions  

Layers Management: REST API to manage information about layers. The layers 

managers provides an interface to access to the different information sources supported 

in the server, allowing users and applications to interact with nodes from several 

different sources. These sources could be internal sources (with nodes stored in Go-

myLife Core Server database) or external sources (retrieving information through web 

services, for example: Panoramio). Both layers (external, internal) provide the same 

features using a unique interface. 

 Get the layers list  

 Make a layer search  

 Get layer’s icon  

 Change layer’s icon  

 Get layer’s info  

http://doc.libregeosocial.org/libreGeoSocial/rest/video.html#upload-a-video
http://doc.libregeosocial.org/libreGeoSocial/rest/video.html#get-video-data
http://doc.libregeosocial.org/libreGeoSocial/rest/video.html#get-video-file
http://doc.libregeosocial.org/libreGeoSocial/rest/video.html#delete-a-video
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/node.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/node.html#show-nodes-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/node.html#permissions-change
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/layer.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/layer.html#show-layer-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/layer.html#permissions-change
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/user.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/user.html#show-user-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/user.html#permissions-cange
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/note.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/note.html#show-note-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/note.html#change-note-s-privacy
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/photo.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/photo.html#show-photo-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/photo.html#change-photo-s-privacy
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/sound.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/sound.html#show-sound-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/sound.html#change-sound-s-privacy
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/video.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/video.html#show-videos-s-privacy-status
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/video.html#change-videos-s-privacy
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/extra.html
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/extra.html#get-all-available-roles
http://doc.libregeosocial.org/libreGeoSocial/rest/privacy/extra.html#get-all-available-permissions
http://193.147.51.135/libreGeoSocial/rest/layers.html#get-the-layers-list
http://193.147.51.135/libreGeoSocial/rest/layers.html#make-a-layer-search
http://193.147.51.135/libreGeoSocial/rest/layers.html#get-layer-s-icon
http://193.147.51.135/libreGeoSocial/rest/layers.html#change-layer-s-icon
http://193.147.51.135/libreGeoSocial/rest/layers.html#get-layer-s-info


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 23 / 28 

  

 Get layer’s category  

 Create a layer  

 Delete a layer 

Layers’ Queries: The layers system provides an interface to make specific queries. 

These queries will allow developers to access easily to special features in the layers 

system, such as, a search in multiple layers, something that also could be done with 

several requests with the standard layers interface. 

 Multi layer search  

3.2.1.2 Layer Manager 

The Layer Manager is a module of LibreGeoSocial framework to manage and classify 

contents. Thus, all the contents are acceded through a specified layer or channel. These 

contents could be stored in the Go-myLife server (using Internal Layers) or in 3rd 

parties information sources (using External Layers).  

For example, you could have three layers in your system: Go-myLife (internal), 

Panoramio (external), Picasa (external). The clients using Go-myLife server could 

access to the geolocated contents of these layers without worrying about the storing 

location of the contents. They will have a great abstraction and qualifying system. From 

the point of view of the client, there are no differences in the way you access and 

manage the information contents.  

In order to add new layers to your system: 

 You could create internal layers easily, using the Layers' API. 

 You could integrate external layers implementing a specified interface in the 

server.  

After that, clients will access the new information of the layers without making 

modifications in the client, thanks to the Layers’ API.  

This module allows an easy integration system for sources of information; it qualifies 

the contents and provides to clients a good abstraction model. 

3.2.1.3 Export Manager  

The Export Manager is a module of LibreGeoSocial framework that allows client to 

receive the information using different formats of data.  

Currently, the LibreGeoSocial framework can export the data in two different formats 

through the Export Manager: JSON and XML. But, it could be added new formats. 

Next, a class diagram of the module: 

 

 

 

 

http://193.147.51.135/libreGeoSocial/rest/layers.html#get-layer-s-category
http://193.147.51.135/libreGeoSocial/rest/layers.html#create-a-layer
http://193.147.51.135/libreGeoSocial/rest/layers.html#delete-a-layer
http://193.147.51.135/libreGeoSocial/rest/queries.html#multy-layer-search


AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 24 / 28 

  

 

Illustration 4 Export Manager 

 

The Export Manager not only converts the information to the desired format, but also 

returns the information with a specified response (usually, with an HTTPResponse).  

In a typical workflow using LibreGeoSocial server, the client asks for information 

through the layers abstractions. Internally, the information is retrieved (internal or 

external). This information is returned to the client using the Export Manager, 

converting the data to JSON or XML, and after that, creating an HTTPResponse. 

 

3.2.2 Social Connector Manager 

To integrate external social networks like Facebook or Twitter, we have designed the 

following architecture:  

 

 

Illustration 5 Social Connector Manager 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 25 / 28 

  

 

The objective is that users must be able to perform a two-way communication between 

these external social networks and Go-myLife at different levels:  

1. Users of Go-myLife should be able to use their Facebook or Twitter accounts to 

authenticate into Go-myLife 

2. Users of Go-myLife should be able to export content from Go-myLife to 

Facebook, Twitter, etc. 

3. Users of Go-myLife should be able to import content from external social 

networks.  

To allow an easy integration of social networks, the SocialConnectorManager class is a 

factory class used to create all the instances of Social Connectors. Adding new social 

networks will be as simple as implementing the ISocialConnector interface and fill the 

abstract methods with the code to obtain the data of a specific social network.  

Using the ISocialConnector interface, it is possible to login/logout, to update status of 

users, to get user information, and to get all layers that this social network provides.  

All the information in LibreGeoSocial framework is organized using layers that contain 

geonodes. For this reason, all social connectors must store the user information in 

layers. It should exist one social connector for each social network. They must respect 

the defined interface and return GeoNodes. This is how LibreGeoSocial framework can 

handle with the geolocated information. 

 

3.2.3 Web application 

The Go-myLife web application provides the end users a user friendly and accessible 

interface to Go-myLife platform. The web application will allow users to access all the 

functionalities provided by the system either through a desktop web browser or through 

a mobile web browser. Additionally through the web application the user will be able to 

download the Go-myLife Mobile Application and install it on his mobile device. 

The architecture of the Go-myLife Web application is shown in Illustration 5. 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 26 / 28 

  

 

Illustration 5 Go-myLife Web Application Architecture 

 

The Go-myLife Web Application consists of the following layers:  

 The Go-myLife Web Client is the part of the application running on the web 

browser. It contains a JavaScript library component (Go-myLife Web Client 

Library) implementing the presentation logic of the application, providing rich 

user interaction capabilities and communicating with the server-side components. 

 The Go-myLife Web Server Application running on a web server host 

implements the core functionality of the user interface and communicates with the 

rest Go-myLife services. It encapsulates the user interface rendering logic and the 

orchestration of user actions and application workflows. 

 The Go-myLife Mobile Client provides access to Go-myLife from a mobile 

device either through a mobile web browser (Go-myLife Mobile Web Client) or 

through a mobile application installed on the device (Go-myLife Mobile 

Application). The mobile application can take advantage of advanced capabilities 

of the mobile device such as GPS functionality, camera and accelerometer. 

 

The Go-myLife Web Application architecture is based on the Model-View-Controller 

(MVC) design pattern.  

The Web Server Application contains the Request Handler component which receives 

requests from the browser (Web Client or Mobile Web Client), invokes the appropriate 

actions on the UI Core component, creates the corresponding user interface elements 

from the UI Controls Library component and renders the response back to the browser. 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 27 / 28 

  

The UI Core component is implementing the core application logic and is responsible 

for interacting with the other Go-myLife components, such as the Social Networking 

Engine and the Social Connector Manager, through the services provided by the 

platform. 

The UI Controls Library component is responsible for implementing the rendering logic 

of the user interface elements. Additionally this component will be responsible for 

implementing compliance with W3C’s Web Content Accessibility Guidelines (WCAG) 

2.0.  

The Go-myLife Web Client will make use of JavaScript technology in order to provide 

a rich user-friendly browser based interface. This is the purpose of the Go-myLife Web 

Client Library which will utilize the jQuery library, an advanced and widely used 

JavaScript library facilitating web development and Ajax programming. Ajax will also 

be used in order to create a more interactive and dynamic interface. 

The Go-myLife Mobile Web Client will be a simplified version of the web client 

optimized for mobile devices.  

The Mobile Application will provide integration with the device’s advanced capabilities 

and will make it easier for the user to access Go-myLife seamlessly during his everyday 

activities. The application will communicate directly with the Go-myLife platform 

services. 



AAL Joint Programme   AAL-2009-2-089 

 
Version: 1.0 

 

Author: Idoia Olalde (Andago) 

Date: 31/03/2011 Page 28 / 28 

  

4 Conclusion 

This deliverable describes the initial design for Go-myLife platform, explaining the 

different components that compose the overall system. It also collects the design 

requirements agreed during T2.5 Technical Requirements’ Analysis. 

The Go-myLife system consists of 3 main blocks: the Social Network Engine, the 

Social Connector Manager and the web based client application. 

The Go-myLife server will be based on LibreGeoSocial framework which manages 

geolocated information, one of the bases of the Go-myLife project. 

Connections with other social networks will be performed through the Social Connector 

Manager component, offering an interface to facilitate the integration of new social 

networks. In this first version, connectors to Twitter and Facebook will be implemented. 

Users of Go-myLife will access to the platform through a web based application that 

will follow the W3C’s Web Content Accessibility Guidelines (WCAG) 2.0 (mobile 

browser version and desktop browser version). Go-myLife will also offer a Mobile 

Application to provide integration with the device’s advanced capabilities and Go-

myLife platform. 

 

 

 


