

DELIVERABLE

Project title: LetItFlow: Active Distributed Workflow System for elderly

Project reference number: AAL-2013-6-128

D3.1 – System interfaces definition

Revision: 1.0

Main Authors:

 Pedro A. Ruiz, Miguel Baizán and Francisco Fornés from INTEGRASYS

Ben Loke and Leon Wiertz from Noldus

Simona Bica, Victor Carmocanu and Otilia Bularca (reviewer) from SIVECO

Georg Regal and Valentin Gattol (reviewer) from AIT

Date: [29/02/2016]

Dissemination Level: Public

 Page 2 / 75

TABLE OF CONTENTS

LIST OF FIGURES ..4

LIST OF TABLES ...5

ABBREVIATIONS ..5

1. INTRODUCTION ...6

1.1 SCOPE AND OBJECTIVES OF THE DELIVERABLE .. 6

1.2 STRUCTURE OF THE DELIVERABLE .. 6

2. MODULES DEFINITION ...7

3. USER INTERFACE MOCKUPS ..8

3.1 WORKFLOW ENGINE .. 8

3.2 LETITFLOW SMARTPHONE INTERFACE .. 11

3.2.1 LetApp .. 11

STATUS ... 11

3.2.2 LetTrain .. 13

3.2.3 LetAlarm and LetCritical .. 14

3.3 LETITFLOW SMARTWATCH INTERFACE .. 16

3.3.1 LetApp .. 16

3.3.1 LetAlarm and LetCritical .. 18

3.4 MONITORING MANAGER ... 18

4. INFRASTRUCTURE ... 19

5. DEVELOPMENT ENVIRONMENT AND REPOSITORY....................................... 20

5.1 WORKFLOW ENGINE .. 20

5.2 LETAPP .. 21

5.3 LETCRITICAL ... 21

5.4 LETALARM ... 21

5.5 LETTRAIN I ... 21

5.6 MONITORING MANAGER ... 22

 Page 3 / 75

6. TESTING ENVIRONMENT ... 23

6.1 WORKFLOW ENGINE .. 26

6.2 LETAPP .. 28

6.3 LETCRITICAL ... 34

6.4 LETALARM ... 35

6.5 LETTRAIN I ... 38

6.6 MONITORING MANAGER ... 38

7. INTERFACES DEFINITION .. 39

7.1 INTERFACES DEFINITION TEMPLATES .. 39

7.1.1 REST based interfaces .. 39

7.1.2 N-LINX-based interfaces ... 40

WHAT .. 41

7.2 WORKFLOW ENGINE INTERFACES ... 45

7.2.1 User management ... 45

7.2.2 BPM management ... 53

7.2.3 BDM management ... 63

7.3 LETAPP INTERFACES ... 65

7.4 LETCRITICAL INTERFACES .. 68

7.5 LETALARM INTERFACES .. 70

7.6 LETTRAIN I INTERFACES .. 71

7.7 MONITORING MANAGER ... 71

8. DATA MODELS .. 72

9. BIBLIOGRAPHY ... 75

 Page 4 / 75

LIST OF FIGURES

Figure 1. Workflow engine UI interface (dashboard) ...8

Figure 2. Workflow engine UI interface (list workflows) ..9

Figure 3. Workflow engine UI interface (visualise workflows) ...9

Figure 4. Workflow engine UI interface (edit workflow properties) ... 10

Figure 5. Workflow engine UI interface (visualise tasks) .. 10

Figure 6. Workflow engine UI interface (manage users) ... 11

Figure 7. LetApp: (a) List of tasks, (b) Subtasks ... 12

Figure 8. Messaging Screens in LetApp ... 13

Figure 9. Additional Training Material in LetTrain ... 14

Figure 10. Send Alarm Interface in LetAlarm .. 15

Figure 11. LetAlarm: (a) Alarm Call and (b) Alarm-Notifications (c) Confirmation .. 15

Figure 12. Smartwatch Design Principle realized in LetApp .. 16

Figure 13. Smartwatch – Gesture Control ... 17

Figure 14. Smartwatch – Task Overview and Control ... 17

Figure 15. Message Notification in LetApp on the smartwatch .. 18

Figure 16. Alarm Notification in LetAlarm and LetCritical ... 18

Figure 17. HW and SW infrastructure for HUVM and UHB ... 19

Figure 18. Example of an N-Linx contract for a request – reply type of exchange. .. 42

Figure 19. BPDM for the workflow engine .. 73

 Page 5 / 75

LIST OF TABLES

Table 1 - Status of Task, Color and Symbol ... 11

Table 2 - Template for defining RESTful services .. 39

Table 3 - The three parts that make up an N-Linx contract. ... 41

Table 4 - Data types of the N-Linx base library.. 43

Table 5 - Data types of the N-Linx Thrift library. ... 44

ABBREVIATIONS

BPM – Business Process Management

BPMN – Business Process Model and Notation

MoSCoW - Must have, Should have, Could have and Would like but won't get

 Page 6 / 75

1. INTRODUCTION

The present document, deliverable D.3.1 – System interfaces definition is the first deliverable of
WP3, which is related to the development of the LetItFlow system components. In the previous
deliverables, the consortium has focused on the requirements analysis and system design aspects
of the project. D3.1 represents the link between these initial aspects and the implementation tasks.

According to the Description of Work of the LetItFlow project, D3.1 reports the activity of Task 3.1
System Interfaces. This will represent the main input to deliverable D3.2 and to the integration tasks
of WP4.

1.1 Scope and objectives of the deliverable

The main outputs of WP2 are the functional specification of the LetItFlow project and a general
architecture design, further including the identification of the different modules that will compose the
final system. After this work and following the typical software development cycle, the next logical
step prior to the implementation tasks is to create more detailed designs. However, when it comes
to development activities in collaborative projects it is crucial to define responsibilities and to pay
special attention to the joint points among partners, since it is usually more critical to define the
interfaces of the different modules than offering detailed designs of them. This is the better way to
assure that the final integration of the works performed in parallel will be carried out smoothly.

The deliverable D3.1 reports this effort to establish a common understanding among partners and
serves as a reference document for defining the interfaces of the LetItFlow modules. Specifically,
the main goals of this document are:

- Define the software and hardware architectures to be deployed in the final scenarios
- Identify the interfaces of the different LetItFlow modules, which at this stage will be

considered as black boxes
- Define a common data model
- Identify the development environment and tools to be used during the implementation stage
- Define the test environments for performing atomic tests on modules.

1.2 Structure of the deliverable

The deliverable D3.1 is structured in sections as follows:

- Section 2 - Modules definition: presents a refinement on the definition of the LetItFlow
modules

- Section 3 - User interface mockups: presents a refinement on the user interfaces
- Section 4 - Infrastructure: includes the description of the software and hardware

infrastructure that will be deployed in the final LetItFlow scenarios
- Section 5 - Development environment and repository: evaluates different development

environments and chooses for each module the most adequate
- Section 6 - Testing environment: refers the most relevant aspects regarding the process of

testing the major modules of the LetItFlow solution
- Section 7 - Interfaces definition: defines the base technologies to develop the services for

the interfaces of the LetItFlow modules, describes templates for defining such interfaces and
reports all the specific interfaces and services.

 Page 7 / 75

- Section 8 - Data models: defines the data model that the modules will use for communicating
among them through the interfaces.

2. MODULES DEFINITION

After some further analysis on the results of WP2, the Consortium has seen the necessity of refining
the definition of the LetItFlow modules. In this section of the document we update (and in some
cases extend) such definitions, so that the Consortium establishes a common understanding of the
different functionalities.

The LetItFlow modules are:

- Workflow engine: This is the core component that manages all the business processes
logic. It allows users to define, execute and monitor business processes. It also allows
managing and monitoring the status of activities and the transition between different tasks
inside a process. It belongs to the server side or backend part of the LetItFlow system.

- LETAPP: The smart device application (tablet, smartphone, smartwatch) to support
technicians, nurses and operators in their daily work tasks. It represents the main front-end
for the workflow engine. It guides the workers throughout the business processes
implemented in the workflow engine.

- LETALARM: alarm system used for notifying the workers about high priority tasks and about
some of the tasks triggered by timers (e.g. in the form of reminders).

- LETCRITICAL: alarm/warning system for notifying the workers about critical situations. In
this case, the alarm is triggered by humans or monitoring devices (e.g. vital signal monitoring
system). Most of the functionalities of this module will be implemented in the smartwatch
interface.

- LETTRAIN I: training application based on LETAPP (task related content, recording status
of the task…). Similar to a read-only LETAPP. This module allows staff to be trained and get
familiar with the different business processes.

- Monitor Manager: module for monitoring the status of workers’ during their daily activities.
- Communication module (N-Linx based): Communication layer that provides support to the

communication between modules based on the AMQP protocol.

Apart from these modules, the Consortium has identified two additional modules. Aiming at focusing
on the important parts of the LetItFlow system, the Consortium has decided to assign them with a
low priority and it has been decided to postpone its implementation for now. The modules are the
following:

- LETTRAIN II: related to the analysis system (e.g. based on the ObserverXT)
- LETSIM: simulation tool that focuses on the laboratory workflow.

 Page 8 / 75

3. USER INTERFACE MOCKUPS

In the following section we will describe the first version of User Interfaces for the proposed
LetITFlow system that interacts with different modules that build the overall workflow support
system. The workflow support system is the core of the LetITFlow project. The modules are the
workflow engine (section 3.1), the LetITFlow application deployed on a smartphone (section 3.2)
and a smartwatch (section 3.3) and the monitoring manager (section 3.4).

The interfaces design is based on existing guidelines and emphasizes on the special needs of the
active older adults, considering the specific objectives of the LetItFlow project. Following a
personalization approach, we will design the interfaces to be adaptable (e.g. in terms of speaker
volume, size of the text, brightness, content, etc.) to fulfil various user needs.

3.1 Workflow Engine

The User Interface of the workflow engine is a PC based interface for the laboratory manager and is
based on web technologies.

Figure 1. Workflow engine UI interface (dashboard)

The Figure 1 represents the main page of the workflow engine. In this page, the manager can
visualise some statistics related to different performance indicators for the different business
processes and access to other managerial functions. Specifically, by using the left panel, the
manager is able to access workflows installed in the engine, modify some of their properties (e.g.
user assignment, time schedules, etc.), visualise the tasks and the users assigned to those tasks, or
manage the users. All these features are represented in the next figures.

 Page 9 / 75

Figure 2. Workflow engine UI interface (list workflows)

Figure 3. Workflow engine UI interface (visualise workflows)

 Page 10 / 75

Figure 4. Workflow engine UI interface (edit workflow properties)

Figure 5. Workflow engine UI interface (visualise tasks)

 Page 11 / 75

Figure 6. Workflow engine UI interface (manage users)

3.2 LetItFlow Smartphone Interface

In this section the user interface for the smartphone is described. The smartphone application
allows access to the functionalities of LetApp, LetAlarm, LetTrain and LetCritical.

3.2.1 LetApp

The LetApp interface comprises three main functionalities that can be accessed by tapping on the
icons at the bottom: (1) List of tasks, (2) Alarm functionality, (3) Messaging functionality.

Status Colour Symbol

Completed Green

In Progress Yellow

Open Grey

On Hold Orange

Table 1 - Status of Task, Color and Symbol

 Page 12 / 75

Figure 7 shows the interface for the task list. It consists of a list of tasks in a logical order. Each task
has an assigned subtask that one may access by tapping on that task. Table 1 gives an overview of
task status through a colour-coded background and a dedicated icon for the four states. If a subtask
is displayed, the main task (e.g. “(1) Startup biochemistry…”) will be displayed at the top of the
screen and always remain visible, so that the user knows which task he is currently working on. For
a quick switch between tasks in the subtask screen, the user may tap on the main task icon to get
back to the list of available tasks.

The status of a task may be changed either by changing the status of all subtasks (when all
subtasks are completed, the status of the main task changes automatically), or by changing the
status of the task itself. This is possible by tapping on the task status icon.

By tapping on a task, additional training and information material is displayed (see Section 3.2.2
LetTrain).

Figure 7. LetApp: (a) List of tasks, (b) Subtasks

Figure 8 shows the messaging functionality of LetApp. The goal of the messaging functionality is to
allow for secure internal communication that helps the medical staff in internal coordination for
better collaboration. Using the messaging interface, they can send messages to colleagues.
Messages may represent text, pictures or audio recordings. It allows individual and group
communication.

Frequently used contacts are displayed in the list, for adding a new chat the user has to tap on the
new message button.

Messages are shown as bubbles in the order of receiving and sending, a pattern used by most of
today’s messaging clients. For consistency, we rely on the same presentation mode.

 Page 13 / 75

Figure 8. Messaging Screens in LetApp

3.2.2 LetTrain

Figure 9 shows the smartphone interface for LetTrain. The goal of LetTrain is to provide additional
training material (e.g. detailed task descriptions, additional documents for further reading, learning
materials, and tutorial videos). User may access additional information by clicking on a task that has
information assigned to it. If multiple pages are available (e.g. text description and video), users may
change between the pages by either clicking on the “>” and “<” arrows or by swiping to the left /
right.

 Page 14 / 75

Figure 9. Additional Training Material in LetTrain

3.2.3 LetAlarm and LetCritical

Figure 10 shows the smartphone interface for LetAlarm. It provides users with the possibility to send
an alarm to colleagues.

The main idea proposed in the interface design is to provide the needed functionality quick by hand,
so that users may ask for help quickly in an emergency situation. The user may send an alarm
message along with additional descriptions in the form of text, voice recordings, or photos to one or
more colleagues. A list of colleagues and groups is displayed on the screen: by swiping left, users
are shown the colleagues that have already been notified; by tapping on the plus icon, users can
add additional colleagues that should receive the alarm.

 Page 15 / 75

Figure 10. Send Alarm Interface in LetAlarm

Figure 11a shows the smartphone notification for LetAlarm. If an alarm is sent this dialogue is
displayed to the user, to inform about the broadcast and allow for cancelation of the call. Figure 11b:
An alarm notification is shown if a user receives an alarm broadcast. The user can agree or decline
to help. Figure 11c: is displayed to the user after a colleague agreed to help.

Figure 11. LetAlarm: (a) Alarm Call and (b) Alarm-Notifications (c) Confirmation

 Page 16 / 75

3.3 LetItFlow Smartwatch Interface

As mentioned before, the LetItFlow application is deployed on devices like smartphones,
smartwatches. In this section the user interface for the smartwacth is described. The smartphone
application allows access to the functionalities of LetApp, LetAlarm, and LetCritical.

3.3.1 LetApp

Figure 12 shows the smartwatch interface for LetApp. It provides an overview of open tasks and the
subtasks related to this task. The LetItFlow application on the smartwatch follows the design-
guidelines for Android wear1. Android wear applications basically consist of a set of so-called “cards”
that provide only one piece of information at a time, following the principle: “Do one thing, really
fast”. Also, information must be visible within a glance, following the principle: “Design for the corner
of the eye”.

Figure 12 describes the design principle for one card. It displays the time, the upcoming task and
the status of the task (in this example, “on hold”), by setting the background colour and the icon
according to the status, as defined in Table 1.

Figure 12. Smartwatch Design Principle realized in LetApp

The basic interaction principle is in Figure 13. By swiping up and down the user may switch between
tasks. By swiping left and right the user may access subtasks. Figure 14 shows how tasks and
subtasks are connected and also provide visualizations for all the four states (cf. Table 1).

1
 https://developer.android.com/design/wear/index.html

https://developer.android.com/design/wear/index.html

 Page 17 / 75

Figure 13. Smartwatch – Gesture Control

Figure 14. Smartwatch – Task Overview and Control

 Page 18 / 75

Figure 15 shows the smartwatch interface for the messaging interface of LetApp. It displays a
notification for an incoming message to the user. To reply to this message, the user has to use the
the messaging functionality of LetApp. The user may delete the notification by swiping to the left or
right.

Figure 15. Message Notification in LetApp on the smartwatch

3.3.1 LetAlarm and LetCritical

Figure 16 shows the smartwatch interface for LetAlarm and LetCritical. It shows an alert message to
the user that was received. The user may delete the notification by swiping to the left or right.

Figure 16. Alarm Notification in LetAlarm and LetCritical

3.4 Monitoring manager

The monitor manager is the backend component for the LetCritical component and monitors and
warns the nurses/elderly whenever a potential critical situation arises. The monitoring manager does
not have a real user interface.

 Page 19 / 75

4. INFRASTRUCTURE

This section includes the description of the software and hardware infrastructure that will be
implemented in the LetItFlow project.

Figure 17. HW and SW infrastructure for HUVM and UHB

The preliminary software and hardware architecture devised for the HUVM and UHB scenarios is
depicted in Figure 17. As it may be observed, we plan to deploy a new server at the facilities, whose
main role is to run the workflow engine module. This will be based on the Bonita BPM 72 platform
and Java 7 technologies. Such platform will make use of the Apache Tomcat 7 web server and the
PostgreSQL database technologies for respectively providing web-based user interfaces and
persistence to the business process logic.

The connection between the server and the different mobile devices will be established via a Wi-Fi
access point. Some repeater might be required for extending the coverage of the Wi-Fi signal
throughout the laboratory of HUVM.

For each of the two medical institutions – HUVM and UHB, the infrastructure is represented by
mobile devices including two Android tablets, which will be deployed in fixed positions, one
smartphone and one smartwatch associated to it. The tablets and smartphone will access the
LETAPP, LETALARM and LETTRAIN I applications. The Android smartwatch will offer some of the
LETALARM functionalities.

2
 http://www.bonitasoft.com/for-you-to-read/bpm-library/bonita-bpm-7

 Page 20 / 75

5. DEVELOPMENT ENVIRONMENT AND REPOSITORY

The deliverable D2.3, Section 7 (i.e. Technology approach), includes some preliminary analysis on
the development frameworks, tools and programming languages that the LetItFlow consortium has
considered as the most suitable for building the whole LetItFlow system. Based on this evaluation,
we identify here the development environment to be used for each module.

Selecting the specific technologies involves balancing the adequacy to the project requirements and
to the technical expertise of the LetItFlow partners; normally, when two or more technologies seem
adequate at the requirements level, it is chosen the one which is most familiar to the technical staff
of the project.

On the other side, the different LetItFlow modules impose different requirements, and therefore
different technologies might be used for the achievement of the same goals. It is worth mentioning
that this fact is not considered as critical as long as the definition of interfaces allows cross-module
communication and a seamless integration. Therefore, the next subsections present the
development environment used for creating each of the LetItFlow modules.

5.1 Workflow engine

The workflow engine in LetItFlow will be based on the Bonita BPM software version 7.1.

Bonita BPM is a powerful BPM-based application platform for building highly engaging,
personalized, process-based business applications. It is based on the BPMN 2.0 standard and it is
mainly composed of two parts: the development environment (Bonita BPM Studio) and the runtime
environment (Bonita BPM Platform).

Bonita BPM Studio is a graphical environment for creating processes and application pages.
Therefore, in LetItFlow we will use this framework for designing the different processes that define
the daily activity of hospitals. It will establish a meeting point for the technical and non-technical
partners where both can graphically and easily define or review the workflows that will come up from
the use cases defined in WP2.

The Bonita BPM Platform is suitable for testing a process that is in development. Once a process is
correctly defined in the Bonita BPM Studio, it can be built and deployed on the Bonita BPM
production platform. By default, the Bonita BPM platform uses the following technological
components for running the processes: Tomcat, the Bonita BPM Portal (part of Bonita BPM visible
to process users and managers who use it to manage/execute tasks and processes), the Bonita
BPM Engine (workflow engine) and an h2 database. This is the configuration normally used for
testing. However, different technologies can be used in production. In LetItFlow we will use the
following technologies for running the workflow engine:

- Tomcat server 7
- The Bonita BPM engine
- PostgreSQL 9.3

Regarding the development frameworks we have two options:

- Eclipse3 for building the workflow engine user interface. This uses JavaScript and web
based technologies.

3
 https://ro.wikipedia.org/wiki/Eclipse_(software)

 Page 21 / 75

- Bonita BPM Studio4. It has an Eclipse-based graphical interface. It will be used for
modelling the business processes and also for implementing them, since the tool itself is a
complete framework based on Java technologies. Once the processes are designed, the
Bonita BPM Studio offers graphical interfaces for inserting the logic to the processes.

Summarizing, Bonita BPM studio will ensure creating and building the processes and the Bonita
BPM engine, Tomcat and PostGreSQL running the processes. The workflow engine will use REST
APIs for allowing the access to all the data. You may read Sections 7 and 8 for further details about
this.

5.2 LETAPP

The LetApp component has two parts, one that runs on a smartphone and a central part that runs
on a PC/Server. The PC/Server component will manage the daily medical staff activity by interacting
with their daily routine. The mobile component will aid the medical staff in their daily routine by
displaying useful information (tasks, activities etc). The displayed information will be available to
interact with presenting the user with detailed information or updates on their current activity.

This will be possible by developing specific business processes in Bonita BPM Engine (Workflow
engine) that will act as functional requirements, thus covering the medical staff specific
requirements.

In order to facilitate communication and integration with different LetItFlow applications such as
LetCritical, a REST API is developed to allow the access to the data (for details, see Section 7).

5.3 LETCRITICAL

The LetCritical component has a part that runs on a smartphone and a part that runs on a central
PC/Server. The smartphone part is responsible for communicating with the sensors, sending the
sensor data to the central machine, and communication with the user. The communication from the
smartphone to the central machine use the Noldus N-Linx library, a communication library using the
AMQP protocol, build on top of RabbitMQ client libraries (for details, see 7.1.2).

The development platform for the smartphone app will be Android Studio, whereas the server side
part will be developed in C++ using Visual Studio 2013.

5.4 LETALARM

The same development technologies used for the LETAPP (Section 5.2) are applicable to the
LETALARM module.

5.5 LETTRAIN I

The same development technologies used for the LETAPP (Section 5.2) are applicable to the
LETTRAIN I module. The workflows for LETTRAIN I are similar to those implemented in LETAPP.
The most relevant functionalities of LETTRAIN I facilitate the training of the staff and are related to
specific content that can be added to the tasks and also to the procedures to allow the users access

4
 https://en.wikipedia.org/wiki/Bonita_BPM

 Page 22 / 75

such training content. This content will be stored in the database and it will consist of self-explicative
data sources distributed in different formats (pdf, word, mp4 etc.).

5.6 Monitoring manager

See Section 5.3 for details. The development techniques applicable for the server side part of the
LetCritical component apply to the Monitoring Manager as well.

 Page 23 / 75

6. TESTING ENVIRONMENT

This section refers the most relevant aspects regarding the process of testing the major modules of
LetItFlow solution: testing procedure (specific activities/tasks), test objectives, specific testing
approaches, testing methods, test design specifications, test case specifications, testing
deliverables and test results.

The goal of this section is to define a first draft of the testing environment which will be used for
validating each module independently. The test environment usually entails the hardware, network
and supporting software/tools infrastructure required to execute the tests.

Testing strategy presumes the following aspects:

- Agreement on goals and objectives among stakeholders
- Expectation management
- Test identification
- Timeframe.

The following essentials being addressed: “What to test”, “How to plan and execute the testing?”
and “Goals of testing”.

Testing approach

As presented in the deliverable D2.2, during the implementation of the LetItFlow system we will
apply an innovative approach – the use of a mix of methods and principles from Agile methodology
and UCD design, specific for the software development. In the stage of testing we are going to use
Agile development processes (testing in an Agile perspective). Agile development process implies
continuous improvement and the testing is based on rapid feed-back, following the next path:
TaskTask DevelopingTask DoneTask TestingTask OkTask Publish.

We consider that the Agile development process is very suitable for any future requirements (either
new requirements have to be added or the existing ones have to be changed).

The appropriate Agile testing techniques are specific to the following Agile testing areas (quadrants
Qi):

- Q1: Technology Facing tests that support the team
- Q2: Business Facing tests that support the team
- Q3: Business Facing tests that critique the product
- Q4: Technology Facing tests that critique the product.

The specific testing techniques (Unit testing) of Q1 aim to support internal quality of the
development process and cover:

- Unit tests
- Component tests.

The specific testing techniques (Functional testing) of Q2 aim to support the collection of better
requirements and conditions for software completeness and cover:

- Functional tests
- Story tests
- Simulations.

 Page 24 / 75

The specific testing techniques (Exploratory testing) of Q3 ensure that working product meets
expectations and cover:

- Scenario tests
- Usability tests
- User Acceptance Tests (UAT).

The specific testing techniques (Performance & Load Testing) of Q4 ensure quality of non-functional
requirements and cover:

- Performance tests
- Load tests
- Security tests.

Test objectives

Testing Environment is focused on execution of Unit Tests (UT). Accordingly, the objectives of this
stage are:

- Unit tests / Component tests will find out whether the units / components behave as
expected (software code level).

- Regression tests. The regression test will ensure that the system remains functionally the
same after changes in the source code have been made during the development process.
The regression test must be 100% automated since it has to be run during every build in
order to ensure that the functionality of the application remains the same.

Testing the features

This stage of testing procedure means setting up the features which have to be implemented/tested
and their level of priority (High, Medium and Low). “High” means that all features with High priority
should be implemented first. The features with Low priority can not be the subject of the
development and testing processes, they are not mandatory for the system to be operational.

High – the feature has to be implemented and tested as soon as possible

Medium – the feature could be implemented and tested after the features with high priority

Low – the feature is not mandatory for the system to be operational; it should be implemented and
tested when the development team hasn’t other high and medium priorities to solve.

For each of the major modules of LetItFlow will be entailed the “Features To Be tested” and the
“Features Not To Be Tested”, based on “Prioritization (MoSCoW)” criteria, as presented hereinafter.

Regression test rules

The regression test will fully cover the component tests. The purpose of the test is to ensure that
every time when a release is made, this release will be tested against the regression test. The main
goal of the regression test is to identify changes in the behavior of the application from a previously
established date. Regression testing will be performed whenever the software or its environment is
changed.

The regression test gives the developers the ability to implement easily and safely major changes
within the code. Applying the TDD (Test Driven Development) approach, the development process
begins by creating the tests before the code. Thus, before the development of the particular features
is started, we have to design and implement the respective test cases for them. If any future

 Page 25 / 75

requirements are demanded, new corresponding tests will be drafted and added into the existing
regression test and only then will start the requirements development.

Coverage requirements

Test coverage belongs to the “White box testing” techniques which addresses the developer/tester
perspective of application testing.

White box testing techniques explore the following aspects:

- Examine paths in implementation
- Each statement, decision branch or path has at least one test case
- Coverage definition varies
- Coverage should be calculated and tracked automatically.

Test coverage is defined as “how many potential paths were performed” and is focused on:

- Code coverage
- Decision coverage
- Condition coverage
- Path coverage.

In this stage of testing the major functionalities of LetItFlow solution, the requirements for the
Unit/Component test are 100% based on decision coverage.

Test deliverables

The following test deliverables (Scripted testing) will be required during the implementation of
LetItFlow project:

- Test plan – overall plan for testing
- Test design specifications – define what needs (features / functionalities) to be tested
- Test case specifications (TC – Taste Case) – define tests to run
- Test procedure – define how test should be run
- Test logs – record details of test in timely order
- Test summary reports – present results and evaluation of tests.

Environmental Needs of testing will be depicted hereinafter for each major module/component of
LetItFlow solution (workflow engine, LETAPP, LETALARM, LETCRITICAL, LETTRAIN, Monitoring
manager).

Test Design Specification

Test Design Specification addresses the features to be tested (represented by the “must have”
requirements of each module). This stage of testing (business facing tests) is focused on business
requirement fulfillment.

Test Design Specification will be depicted hereinafter for each major module/component of
LetItFlow solution (workflow engine, LETAPP, LETALARM, LETCRITICAL, LETTRAIN, Monitoring
manager).

Test Case Specification (TC – Test Case)

Test Case Specification addresses the features tested with Unit/Component test and requires test
scripts or a procedure.

 Page 26 / 75

Test case is characterized by:

- Objective
- Test actions
- Expected results
- Execution preconditions.

A possible structure of TC could be:

Identifier : TCi

Description:

Preconditions:

Input:

Steps:

1.

2.

…

k.

Expected result:

Test Case Specification will be depicted hereinafter for each major module/component of LetItFlow
solution (workflow engine, LETAPP, LETALARM, LETCRITICAL, LETTRAIN, Monitoring manager).

6.1 Workflow engine

Testing approach

Testing approach will be user focused, applying the UCD (User Centred Design) and Participative
Design principles. These principles will be much more critical during the business processes
definition stage, where the design of the specific processes will be done using the BPMN standard
and the Bonita BPM Studio framework. Thus the approach is to define and refine iteratively the
business processes identified for each of the LetItFlow Scenarios (at HUVM and UHB). Specifically,
the technical partners will define the processes according to the user stories and use cases defined
in WP2 and the final users (i.e. hospitals) will review those processes to validate if they describe

 Page 27 / 75

realistically their daily workflows. Several feedback cycles might be required to consolidate the
definition of each workflow.

When it comes to development properly said, we are going to use the following techniques for
testing:

- Unit tests
- Component tests.

When we talk about Unit tests for this LetItFlow module we refer to testing a task. This will be the
smallest testable part. Component tests refer to a whole process.

Features to be tested (Test design specification)

For each task contained in the processes developed with the Bonita BPM studio, we will create a
basic web interface that represents the forms that will need to be filled by the users when
performing each step of a case. These web interfaces will eventually have an equivalent interface in
the mobile devices (majorly for the LETAPP module), so they will serve to test that the LETAPP
features will integrate smoothly with the workflow engine.

In those web interfaces we will only pay attention to the functionality (i.e. not usability) and include
debugging messages for checking the REST API of the workflow engine.

At this point, the processes and tasks are not yet designed, so we cannot define now the features
that will be tested. We can only state that a test will be created for each task that composes a
business process.

Tools (Environmental needs)

The Bonita BPM Studio contains several features that you can use to verify your processes and
perform tests. For instance, you can automatically validate a process diagram by just pressing a
Validation button. Additionally, there are test connectors for attaching external test cases for any of
the components built within the process if necessary.

Also, when you run a process from Bonita BPM Studio it runs on the local Bonita BPM Engine and
launches a local Bonita BPM Portal. The process is not deployed, but behaves as it would after
deployment. Running a process from Bonita BPM Studio is intended for testing during process
development.

Therefore, for testing the workflow engine and the processes developed over it, we will majorly use
the built-in testing features of the Bonita BPM Tool suite. As stated before, with that aim, we will
develop some basic web forms to validate each task and step of the processes.

Test cases (Features tested with Unit Test)

Since the test cases will be defined according to the tasks that compose the business processes,
and these need yet to be designed during the implementation phase, we will define the test cases in
the next deliverable of WP3.

 Page 28 / 75

6.2 LETAPP

Testing approach

The development/testing process is mainly centred upon Agile Development Methodologies, most
specifically TDD (Test Driven Development), taking into account the specific methodological
requirements of the project.

The end-users will be involved in the testing process and their feed-back will be included during the
development of new releases.

Testing process will be user focused, applying the UCD (User Centred Design) and Participative
Design principles.

We are going to use specific techniques of test environment:

- Unit tests
- Component tests.

Features to be tested (Test design specification)

As mentioned before, for each of the major modules of LetItFlow will be entailed the “Features To
Be tested” and the “Features Not To Be Tested”, based on “Prioritization (MoSCoW)” criteria
specified in the deliverable D2.3.

Features to be tested (features that are the object of testing design specification) are represented by
the “must have” requirements of LETAPP module as follows:

1. The user should be able to login into LETAPP through a mechanism of profiles registered
with credentials. The user will access LETAPP through his/her credentials (UserName and
Password).

a. If the user introduces correctly the credentials, he is gaining access to the LETAPP
Main Menu.

b. If the credentials of the user were incorrect, then an error/fail message will be
prompted informing the user that he/she has provided inappropriate credentials.

2. The user/system administrator should be able to register new users in the database.

3. The user should be able to create new tasks in the database.

4. The user should be able to able to start, cancel, resume or complete a task.

5. The user/system administrator/manager should be able to assign/add tasks for a certain
user.

 Page 29 / 75

6. The user should be able to send a message to another user or group of users registered in
the application.

7. The user should be able to receive messages that are addressed to him.

8. The user should be able to access the task list, the subtasks assigned to him and also the
status of each of these tasks. LETAPP must display in case of more complex tasks,
subtasks/steps that need to be fulfilled in order to complete the specific tasks. The user
should be able to modify the status of his/her tasks in order to keep track of his/her activities.

Features not to be tested

Features not to be tested are represented by the “should have” and “would have” requirements of
LETAPP module, as specified in the deliverable D2.3. These features are not the subject of the
development and testing processes; their implementation level of priority is “Low”.

Features not to be tested of LETAPP are the following:

- Modify an existent user
- Accessing the Main Menu functions: User Profile details, Tasks List assigned to a user etc.
- Access to task related content
- Add task related content
- Notify the user about upcoming events.

Tools (Environmental needs)

We are going to use the following testing tools:

- Testing web interface: Apache JMetter
- Testing web services: JUnit
- Implementing test automation for the designated Test Cases: Maven Framework.

Test cases (Features tested with Unit Test)

Test cases will be performed for the “must have” features of LETAPP module as follows:

1. Identifier: TC 01 (LETAPP)

Description: Users Authentication based on profiles and credentials.

Preconditions: User and account are created and associated.

Input:

Steps:

Success Scenario

 Page 30 / 75

1. User enters user name and password;

2. System finds associated account;

3. Credentials are verified

4. User gets access to the system.

Expected Result: Accept access to the system based on user credentials

Fail Scenario

1. User enters random user name and password;

2. System checks associated account;

3. Error message is prompted;

4. User does not get access to the system.

Expected Result: Deny access to the system based on user credentials.

2. Identifier: TC 02 (LETAPP)

Description: Register/Create new users.

Preconditions:

Input:

Steps:

Success Scenario

1. User credentials are inserted

2. User credentials are verified in order to make sure that they are not already registered

into the system

3. New user is created

4. New user is displayed

5. New user account is displayed.

Expected Result: User is created

Fail Scenario

1. User credentials are inserted

2. User credentials are verified not to be existent

3. User is not created

4. Error message is prompted.

Expected Result: User is not created (error message is displayed).

3. Identifier: TC 03 (LETAPP)

 Page 31 / 75

Description: Create new task.

Preconditions:

Input:

Steps:

Success Scenario

1. Task details are inserted

2. Task details are verified

3. Task is created

4. New task is displayed.

Expected Result: Task is created.

Fail Scenario

1. Task details are inserted
2. Task details are verified
3. Task is not created.

Expected Result: Task is not created (error message is displayed).

4. Identifier: TC 04 (LETAPP)

Description: Modify the status of a task.

Preconditions: Task must be created.

Input:

Steps:

Success Scenario

1. Task status is inserted

2. Task status is modified

3. Task details are displayed.

Expected Result: Task status is updated.

Fail Scenario

1. Task status is inserted

2. Task status is not modified

3. Error message is prompted

Expected Result: Task status is not updated.

5. Identifier: TC 05 (LETAPP)

 Page 32 / 75

Description: Assign task to a user.

Preconditions:

1. Task exists

2. User exists.

Input:

Steps:

Success Scenario

1. Insert task name

2. Verify if task name exists

3. Insert user name

4. Verify if user name exists

5. Task is assigned to the concerned/related user

6. Task details and the assigned user are displayed.

Expected Result: Task is assigned.

Fail Scenario

1. Insert task name

2. Verify if task name exists

3. Insert user name

4. Verify if user name exists

5. Task is not assigned to the concerned/related user

6. Error message is prompted.

Expected Result: Task is not assigned.

6. Identifier: TC 06 (LETAPP)

Description: Send a message.

Preconditions:

1. User must be logged in the system.

Input:

Steps:

Success Scenario

1. Message details and destination are inserted/registered

2. Message is sent

3. Message received confirmation is displayed.

Expected Result: Message is sent.

Fail Scenario

 Page 33 / 75

1. Message details and destination are inserted/registered

2. Message is not sent

3. Error message is displayed.

Expected Result: Message is not sent.

7. Identifier: TC 07 (LETAPP)

Description: Receive a message.

Preconditions:

1. User must be logged in the system.

Input:

Steps:

Success Scenario

1. Message is received

2. Message content is displayed.

Expected Result: Message is received.

Fail Scenario 1

1. Message is not received.

Fail Scenario 2

1. Message is received

2. Message content is not displayed.

Expected Result: Message is not received.

8. Identifier: TC 08 (LETAPP)

Description: Access to task and subtask list.

Preconditions:

1. User must be logged in the system

2. User must have assigned tasks.

Input:

Steps:

Success Scenario

 Page 34 / 75

1. Task is selected

2. Task details and sub tasks are displayed

3. Sub task is selected

4. Sub task details are displayed.

Expected Result: Task and subtasks are displayed.

Fail Scenario 1

1. Task is selected

2. Task details and sub tasks are not displayed.

Fail Scenario 2

1. Task is selected

2. Task details and sub tasks are displayed

3. Sub task details are not displayed.

Expected Result: Tasks and sub tasks are not displayed.

6.3 LETCRITICAL

For the LetCritical component there is one scenario to test: Critical Event Handling.

The normal scenario is as follows:

1 A Critical Event is sent to the smartwatch

2a The user sees the event and acknowledges it (there is a critical event).

3a The LetAlarm component will send an alarm message

2b The user sees the event and overrules it (there is no critical event)

3b No further action is taken

2c The user does not see the critical event (because is unable to react)

3c After a predefined amount of time (say 30s) the LetAlarm component will send an alarm
message

Expected result is that an alarm event is raised (or not). Fail scenarios in case (a) and (c) is that no
alarm message is sent. Fail scenario in case (b) is that an alarm message is sent.

 Page 35 / 75

6.4 LETALARM

Testing approach

The development/testing process is mainly centred upon Agile Development Methodologies, most
specifically TDD (Test Driven Development), taking into account the specific methodological
requirements of the project.

The end-users will be involved in the testing process and their feed-back will be included during the
development of new releases.

Testing process will be user focused, applying the UCD (User Centred Design) and Participative
Design principles.

We are going to use specific techniques of test environment:

- Unit tests
- Component tests.

Features to be tested (Test design specification)

As mentioned before, for each of the major modules of LetItFlow will be entailed the “Features To
Be tested” and the “Features Not To Be Tested”, based on “Prioritization (MoSCoW)” criteria
specified in the deliverable D2.3.

Features to be tested are represented by the “must have” requirements of LETALARM module as
follows:

1. The user should be able to send an alarm to another user or group of users registered in the
application.

2. The user should be able to receive alarms that are addressed to him.

3. The user should be able to attend an alarm notify that he is working on/is participating in the
incident.

4. It should be possible (LETALARM should be capable) to identify/provide the location of the
user.

Features not to be tested

Features not to be tested are represented by the “should have” and “would have” requirements of
LETALARM module, as specified in the deliverable D2.3. These features are not the subject of the
development and testing processes; their implementation level of priority is “Low”.

Features not to be tested of LETALARM are the following:

- Notify the user about upcoming events.
- Notify the user for unusual results of vital signs (Interpreting the user’ vital signs).

 Page 36 / 75

Tools (Environmental needs)

We are going to use the following testing tools:

- Testing web interface: Apache JMetter
- Testing web services: Junit
- Implementing test automation for the designated Test Cases: Maven Framework.

Test cases (Features tested with Unit Test)

1. Identifier: TC 01 (LETALARM)

Description: Send an alarm.

Preconditions:

Input:

Steps:

Success Scenario

1. Alarm details are inserted

2. Alarm is created

3. Alarm is sent

4. Created alarm is displayed.

Expected Result: Alarm is sent.

Fail Scenario 1

1. Alarm details are inserted

2. Alarm is not created

3. Error message is displayed.

Fail Scenario 2

4. Alarm details are inserted

5. Alarm is created

6. Alarm is not sent

7. Error message is displayed.

Expected Result: Alarm is not sent.

2. Identifier: TC 02 (LETALARM)

Description: Receive an alarm.

Preconditions:

 Page 37 / 75

1. Alarm is created
2. Alarm is sent.

Input:

Steps:

Success Scenario

1. Alarm is received

2. Alarm details are displayed.

Expected Result: Alarm is received.

Fail Scenario

1. Alarm details are inserted

2. Alarm is created

3. Alarm is not sent

4. Error message is displayed.

Expected Result: Alarm is not sent.

3. Identifier: TC 03 (LETALARM)

Description: Attend an alarm.

Preconditions:

1. Alarm is created
2. User has received the alarm
3. User is working in the incident.

Input:

Steps:

Success Scenario

1. Alarm is received

2. User notify that is involved in the incident

3. User details are displayed.

Expected Result: Notification of attending the alarm is sent and the user details are displayed.

Fail Scenario 1

5. Alarm is received

6. User is involved in the incident

7. Notification is not sent

8. Error message is displayed.

 Page 38 / 75

Expected Result: Notification is not sent.

Fail Scenario 2

1. Alarm is received

2. User is involved in the incident

3. Notification is sent

4. User details are not displayed.

Expected Result: User details are not displayed.

4. Identifier: TC 04 (LETALARM)

Description: Identify the location of the user.

Preconditions:

1. User must be logged in the system

Input:

Steps:

Success Scenario

1. User location is identified

2. User location is displayed.

Expected Result: User location is identified.

Fail Scenario

1. User location is not identified.

Expected Result: User location is not identified.

6.5 LETTRAIN I

The same testing approach and infrastructure used for the LETAPP (Section 6.2) are applicable to
the LETTRAIN I module.

6.6 Monitoring manager

The monitoring manager uses a different test approach. It needs annotated data to be trained and
that annotated data can be used to access the accuracy and precision of the monitoring manager.
Or in other words: Given specific input we know what its output should be. Thus if there is a good
set of training data then it should always be possible to feed the module with the training dataset
and validate its outcome.

 Page 39 / 75

7. INTERFACES DEFINITION

After some preliminary analysis realized in previous deliverables and the consequent discussions
between partners, it has been agreed to use RESTful web services and AMQP based
communication middleware (specifically N-LINX) as the base technologies to develop the services
for the LetItFlow modules interfaces.

After performing the analysis of the requirements for the services and modules to be developed in
the project, the consortium concluded that both technologies sufficiently cover such requirements;
RESTful web services are specified for those cases where a request-reply (data centred)
communication paradigm fits the better, whereas N-LINX are used for services demanding publish-
subscribe (message centred) communication paradigm.

In the case of the RESTful services we use JSON format for transmitting the data.

7.1 Interfaces definition templates

The LetItFlow consortium has used the templates and rules described in the following subsections
to define the interfaces and services required by the modules that will compose the final solution.
The main objective of such templates is to standardize the definition of all the interfaces and ease
the integration process to be performed under WP4.

7.1.1 REST based interfaces

REST interfaces are classified in different categories (e.g. user management, task management,
business data model, etc.). Each category represents a subsection inside each module section.

For each category we define a number of resources (e.g. for the user management category, we
can define as resources user, group, role, etc.). Each resource is represented by a subsection
inside the category section. The representation of the resource is provided as a JSON object that is
specified at the start of the resource subsection.

For each resource we define the services that will operate on it. In most of the cases, these
operations fall into the CRUD categories: Create, Read, Update, Delete, which respectively
correspond to the POST, GET, PUT and DELETE methods used in REST. Alternatively, some more
specific operation can be defined (e.g. Search). The Table 2 is used for describing the services.

Service NameOfTheService

Description Description of the service

Request URL API URL

Request method Method

Request payload Payload

Response payload Payload

Response codes Code

Table 2 - Template for defining RESTful services

 Page 40 / 75

7.1.2 N-LINX-based interfaces

N-Linx is an interprocess and cross platform communication library which has been built on top of
the RabbitMQ [Ref. 1] and TCP network protocols. It is a small layer but the main purpose of N-
Linx is standardization. First it offers out-of-the-box an easy accessible and standardized API in C,
C++, C# and Java and with the potential to support numerous other programming languages.
Second, NLinx standardizes the messages and data which are exchanged between applications by
means of contracts.

The N-Linx library is composed of a base module and a Thrift module. The Thrift module extends
the base module with a full RPClike framework. The main difference between both modules is that
the Thrift module adds type safety, versioning of interfaces and a boilerplate server framework.

N-Linx Base

The N-Linx Base library enables you to send a string or a byte array from a sender application to a
receiver application. There is no type safety and the parsing of the string or byte array must be done
manually, for example by using JSON string parsing.

The base library offers two communication methods:

a. Produce – consume

b. Request – reply

A producer can send data to one or more consumers in the network. It is a one-way communication
pattern. A typical use case is a publish-subscribe design pattern where there are several
applications who are interested and listening to events that are emitted by one producer.

The request-reply pattern is ideal for unicast routing of a request message to one receiver that
replies with an answer. A typical example is in the more traditional client-server setup.

N-Linx Thrift combines the strength of a type safe RPC framework of Thrift with the flexibility of a
RabbitMQ message broker. This opens great possibilities in how programs can communicate with
one another and still have type safety, versioning of interfaces and a single site of data definition in
term of the Thrift IDL contracts. N-Linx Thrift implements a RabbitMQ transport layer and uses the
binary TBinaryProtocol layer and the TThreadPoolServer server layer.

The N-Linx Thrift library offers one communication method:

c. Call – receive

Because the call – receive method is built on top of the N-Linx base library it also supports the
communication patterns fanout and direct.

Contracts

The contracts of the N-Linx library form the core of the system. They define exactly what information
can be exchanged with an application and how the information is exchanged. It is the dictionary of
the inter-process communication. The contracts are described in the Thrift IDL language ([Ref. 2])
which allows for a type safe and version-proof definition. The code for each programming
language is automatically generated from the IDL files by the Thrift compiler. This powerful concept
guarantees that both sides of the communication channel use the exact same data types and
interface functions. Furthermore, changes in the interface definition are supported by the Thrift
versioning system.

 Page 41 / 75

This SDK comes with a few predefined contracts which you can find in the folder SDK\Contracts.
The contracts are divided by product and within each product you can find definitions for entities,
interfaces and types.

What Example
5

Description

Entities Room.Thrift a compositional struct that defines a domain
object. A Room contains e.g. a Name and a
Status

Interfaces SessionService.Thrift Defines the interface with methods. Also
defines the Exchange and optional routing
key of the communication channel.

Types VisoTypes.Thrift Defines enumeration and other types of the
Viso system.

Table 3 - The three parts that make up an N-Linx contract.

5 Examples taken from the Viso contract located in folder SDK\Contracts\Viso.

 Page 42 / 75

Figure 18. Example of an N-Linx contract for a request – reply type of exchange.

N-Linx Base Data Types

The base library of N-Linx supports two data types: you can send a message as a string or as a
byte sequence (see the Publish or Call methods in the API reference manuals). The semantics of
the message, so what it represents, is a responsibility of the client applications, the N-Linx base
library does not make any assumptions about this. Most commonly you can use JSON writing and
parsing to compose a message.

namespace cpp Noldus.NLinx.Contracts.Viso

namespace java Noldus.NLinx.Contracts.Viso

namespace csharp Noldus.NLinx.Contracts.Viso

// Settings for this service

const i32 interfaceVersion = 0;

const string exchange =

"Noldus.NLinx.Viso.SessionService"

const string routingKey = "EAF6A7F6-6787-40B0-918B-

17FBA58919DB"

/** The session service is responsible for creating new live

recordings and for retrieving recorded sessions. */

service SessionService extends CommonService.CommonService

{

 /** Get a list of finished sessions from all rooms. A session is

considered as finished if it has a valid stop time. */

 list<Session.Session> GetSessions();

 Page 43 / 75

 Description Values

Base types

string A UTF-8 encoded variable byte
sequence.

a unicode string

byte array a sequence of unencoded bytes 0x72A339…

Table 4 - Data types of the N-Linx base library.

N-Linx Thrift Data Types

N-Linx Thrift uses the Thrift interface definition language and thus inherits also its types. In addition
to the Thrift base types the N-Linx library defines a few extended types (Table 5). First there are
definitions for date and time and for duration to guarantee that the exchange of time information is
unambiguous, even for communication across time zones. Second, there are definitions for color
and a GUID. The extended types are defined in file .\Contracts\Common\Types\
CommonTypes.Thrift.

Note the absence of unsigned integer types. This is due to the fact that there are no native unsigned
integer types in many programming languages.

 Description Values

Thrift base types

bool a boolean value true, false

byte An 8-bit signed integer –128 to 127

i16 A 16-bit signed integer –32,768 to 32,767

i32 A 32-bit signed integer –2,147,483,648 to 2,147,483,647

i64 A 64-bit signed integer –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

double A 64-bit floating point number 1.7E +/- 308 (15 digits)

string A text string with UTF-8 encoding a Unicode string

 Page 44 / 75

binary a sequence of unencoded bytes 0x72A339…

N-Linx extended types

IsoDateTime An ISO 8601
6
 date and time as

string value
“2014-05-23T10:55:00.000000+02:00”

UnixTime A UTC Unix time
7
 as double with

the fractional part defining the
number of milliseconds

1422863491.675 which is UTC 2015-02-
02T07:51:31.675

Duration The number of microseconds as a
64-bit signed integer

e.g. 2286349 µs =2.286349 seconds

Color An ARGB struct e.g. {255, 128, 128, 128} defining a grey
color

GUID A 16-byte number e.g. C9 8B 91 35 6D 19 EA 40 97 79 88 9D
79 B7 53 F0

Table 5 - Data types of the N-Linx Thrift library.

JSON

JSON (JavaScript Object Notation) is a lightweight structured data format. JSON is easy to read for
both humans and computers and has less overhead than XML. You can use the JSON format when
you choose to work with the N-Linx base library Publish and Call methods. For N-Linx Thrift you do
not need to write your own parsing because this is handled internally by the library.

For the message parsing you need to install a JSON library, for. part of the r example for C++ the
ubuntu JSON boost Spirit parser (https://apps.ubuntu.com/cat/applications/precise/libjson-spirit-dev/) or
the Newtonsoft Json.NET for C# (http://www.newtonsoft.com/json). More information about JSON can
be found here: http://www.json.org/.

Recommend usage in LetItFlow

The Thrift Library is at this moment NOT available for the JAVA library. There for we recommend to
use the base N-Linx modules with JSON messages.

An example JSON message to send location data:

{

 “nlx_time”: 1450708850804,

6
 http://www.iso.org/iso/iso8601

7
 http://en.wikipedia.org/wiki/Unix_time

https://apps.ubuntu.com/cat/applications/precise/libjson-spirit-dev/
http://www.newtonsoft.com/json
http://www.json.org/
http://www.iso.org/iso/iso8601
http://en.wikipedia.org/wiki/Unix_time

 Page 45 / 75

 “nlx_track_id”: “Anne”,

 “x”: 12.604,

 “y”: 24.400,

 “z”: 2.04

}

See Paragraph 4.2 of the SDK documentation for a simple Producer Consumer code example with
the Base Library.

7.2 Workflow engine interfaces

The workflow engine used in LetItFlow is based on the Bonita BMP Platform. The interfaces that it uses are based
on the REST API that the platform offers. The resources defined in the following subsections are directly related

to the entities of the

Figure 19, which represents the entity-relationship diagram for the components that integrates the
LetItFlow system.

7.2.1 User management

7.2.1.1 user

JSON representation of the resource:

{

 "id":"user ID",

 "title":"string",

 "lastname":"string",

 "firstname":"string",

 "userName":"string",

 "password":"",

 "enabled":"true | false"

}

Services to operate on the resource:

 Page 46 / 75

Service createUser

Description Create a new user

Request URL http://../API/identity/user

Request method POST

Request payload A partial representation of a user in JSON (“id” not included)

Response payload The full JSON representation of the user

Response codes -

Service readUser

Description Read a user details

Request URL http://../API/identity/user/<userId>

Request method GET

Request payload -

Response payload The full JSON representation of the user

Response codes -

Service searchUsers

Description Search for a group of users

Request URL http://../API/identity/user

Request method GET

Request payload -

Response payload A JSON array of users

Response codes -

 Page 47 / 75

Service updateUser

Description Update user details

Request URL http://../API/identity/user/<userId>

Request method PUT

Request payload A JSON representation of the user, with the new information

Response payload -

Response codes -

Service deleteUser

Description Remove a user

Request URL http://../API/identity/user/<userId>

Request method DELETE

Request payload -

Response payload -

Response codes -

7.2.1.2 group

JSON representation of the resource:

{

"id":"group ID",

"name":"name",

"parent_path":"the path of the parent group of this group (empty

if the group has no parent)",

"path":"the full path of the group (including its parent path)",

"description":"description"

}

 Page 48 / 75

Services to operate on the resource:

Service createGroup

Description Create a new group

Request URL http://../API/identity/group

Request method POST

Request payload A partial representation of a group in JSON (“name” is mandatory)

Response payload The full JSON representation of the group

Response codes 403 if a group with the same name and parent already exists

Service readGroup

Description Read a group details

Request URL http://../API/identity/group/<group_id>

Request method GET

Request payload -

Response payload The full JSON representation of the group

Response codes 404 if no group with this group ID is found

Service searchGroups

Description Search for groups

Request URL http://../API/identity/group

Request method GET

Request payload -

Response payload A list of groups in JSON

Response codes -

 Page 49 / 75

Service updateGroup

Description Update group details

Request URL http://../API/identity/group/<group_id>

Request method PUT

Request payload A partial representation of a group in JSON (“name” is mandatory)

Response payload -

Response codes 403 if another group with the same name and parent already exists
404 if no group with this group ID is found

Service deleteGroup

Description Remove a group

Request URL http://../API/identity/group/<group_id>

Request method DELETE

Request payload -

Response payload -

Response codes 404 if no group with this group ID is found

7.2.1.3 role

JSON representation of the resource:

{

"id":"role ID",

"name":" name",

"description":"description",

}

 Page 50 / 75

Services to operate on the resource:

Service createRole

Description Create a new role

Request URL http://../API/identity/role

Request method POST

Request payload A partial representation of a role in JSON (“name” is mandatory)

Response payload The full JSON representation of the role

Response codes 403 if a role with the same name already exists

Service readRole

Description Read a role details

Request URL http://../API/identity/role/<role_id>

Request method GET

Request payload -

Response payload The full JSON representation of the role

Response codes 404 if no role with this role ID is found

Service searchRoles

Description Search for roles

Request URL http://../API/identity/role

Request method GET

Request payload -

Response payload A list of roles in JSON

Response codes -

 Page 51 / 75

Service updateRole

Description Update role details

Request URL http://../API/identity/role/<role_id>

Request method PUT

Request payload A partial representation of a role in JSON (“name” is mandatory)

Response payload -

Response codes 403 if another role with the same name already exists
404 if no role with this role ID is found

Service deleteRole

Description Remove a role

Request URL http://../API/identity/role/<role_id>

Request method DELETE

Request payload -

Response payload -

Response codes 404 if no role with this Role ID is found

7.2.1.4 membership

JSON representation of the resource:

{

"role_id":"id of the role of this membership",

"group_id":"id of the group of this membership",

"user_id":"id of the user in this membership"

}

 Page 52 / 75

Services to operate on the resource:

Service createMembership

Description Create a new membership

Request URL http://../API/identity/membership

Request method POST

Request payload A partial representation of a membership in JSON ("user_id",
"group_id" and "role_id" are mandatory)

Response payload The full JSON representation of the membership created

Response codes 403 if a membership with the same attributes already exists

Service searchMemberships

Description Search memberships of a user

Request URL http://../API/identity/membership?p=0&c=10&f=user_id%3d<the id of
the user>

Request method POST

Request payload -

Response payload The full JSON representation of the memberships of the user

Response codes -

Service deleteMembership

Description Delete a membership of a user using the group id and role id.

Request URL http://../API/identity/membership/<the id of the user>/<the id of the
group>/<the id of the role>

Request method DELETE

Request payload -

Response payload -

Response codes -

 Page 53 / 75

7.2.2 BPM management

7.2.2.1 actor

JSON representation of the resource:

{

"id":"actor id",

"process_id":"process id",

"description":"a description of the actor",

"name":"name of the actor

}

Services to operate on the resource:

Service readActor

Description Retrieve information about an actor

Request URL http://../API/bpm/actor/<actor ID>

Request method GET

Request payload -

Response payload The full JSON representation of the actor

Response codes -

Service searchActors

Description Search actors for a given process id

Request URL http://../API/bpm/actor?p=0&c=10&f=process_id%3d <process ID>

Request method GET

Request payload -

Response payload The full JSON representation of the actors found

Response codes -

 Page 54 / 75

Service updateActor

Description Update an actor information

Request URL http://../API/bpm/actor?p=0&c=10&f=process_id%3d <process ID>

Request method PUT

Request payload A partial representation of an actor in JSON (only “description” can be
updated)

Response payload -

Response codes -

7.2.2.2 actorMember

JSON representation of the resource:

{

"id":"actor member id",

"actor_id":"id of the actor for this mapping",

"role_id":"id of role, or -1 if the member type is not role",

"group_id":"id of group, or -1 if the member type is not group",

"user_id":"id of user, or -1 if the member type is not user"

}

Services to operate on the resource:

Service createActorMember

Description Add a new actorMember

Request URL http://../API/bpm/bpm/actorMember

Request method POST

Request payload A partial representation of a membership in JSON ("actor_id" is
mandatory)

Response payload The full JSON representation of the actorMember created

Response codes -

 Page 55 / 75

Service searchActorMembers

Description Search for actor members

Request URL http://../API/
bpm/actorMember?p=0&c=10&f=member_type%3d<member type>

Request method GET

Request payload -

Response payload The full JSON representation of the actorMember found

Response codes -

Service deleteActorMember

Description Delete an existing actorMember.

Request URL http://../API/bpm/actorMember/<actorMember ID>

Request method DELETE

Request payload -

Response payload -

Response codes -

7.2.2.3 process

JSON representation of the resource:

{

"id":"the identifier of the process definition (long)",

"name":"the process name (string)",

"description":"the process description (string)",

"activationState":"the state of the process definition (ENABLED or

DISABLED)",

"actorinitiatorid":"the id of the actor that can initiate cases of

the process"

}

 Page 56 / 75

Services to operate on the resource:

Service readProcess

Description Read a process definition

Request URL http://../API/bpm/process/<processId>

Request method GET

Request payload -

Response payload The full JSON representation of the process

Response codes -

Service readProcessContract

Description Retrieve the process instantiation contract elements. These are
required to start a process

Request URL http://../API/bpm/process/<processId>/contract

Request method GET

Request payload -

Response payload A JSON object representing the process contract elements

Response codes -

Service startProcess

Description Start a process providing correct contract values. This will
automatically create a new case.

Request URL http://../API/bpm/process/<processId>/instantiation

Request method POST

Request payload A JSON object representing the contract element values.

Response payload The created case ID in JSON format

Response codes 201 OK or a contract violation explanation in case of a 400 Bad
request

 Page 57 / 75

7.2.2.4 case

JSON representation of the resource:

{

"id":"the identifier of the case",

"start":"the starting date of the case",

"state":"an enum that represent the state of the case. It can be

INITIALIZING, STARTED, SUSPENDED, CANCELLED, ABORTED, COMPLETING,

COMPLETED, ERROR, ABORTING",

"rootCaseId":"the identifier of the container of the case",

"started_by":"the identifier of the user who started the case",

"processDefinitionId":"the identifier of the process related of

the case"

}

Services to operate on the resource:

Service createCase

Description Create a case

Request URL http://../API/bpm/case

Request method POST

Request payload The process definition id, in JSON.

Response payload The JSON representation of a case resource

Response codes -

 Page 58 / 75

Service readCase

Description Get a case by using its identifier

Request URL http://../API/bpm/case/<case ID>

Request method GET

Request payload -

Response payload A JSON representation of the case

Response codes -

Service searchCases

Description Search for a case

Request URL http://../API/bpm/case/

Request method GET

Request payload -

Response payload JSON representations of matching cases

Response codes -

Service deleteCase

Description Delete a case

Request URL http://../API/bpm/case/

Request method DELETE

Request payload The case id, in JSON

Response payload -

Response codes -

 Page 59 / 75

7.2.2.5 task

JSON representation of the resource:

{

"id":"the task id (long)",

"name":"the task name (string)",

"description":"the task description (string)",

"processId":"the process id (long) that is associated with this

task",

"state":"the current state of the task (string, for example,

ready, completed, failed)",

"assigned_id":"the user id (long) that this task is assigned to,

or 0 if it is unassigned",

"executedBy":"the id (long) of the user who executed the task, or

0 if the task has not been executed",

"caseId":"the case id (long) that is associated with this task",

"actorId":"the id (long) of the actor that can execute this task,

null otherwise"

}

Services to operate on the resource:

Service readTask

Description Read a task

Request URL http://../API/bpm/task/<task ID>

Request method GET

Request payload -

Response payload JSON representation of a task

Response codes -

 Page 60 / 75

Service searchTasks

Description Search for a task

Request URL http://../API/bpm/task/

Request method GET

Request payload -

Response payload JSON representation of an array of tasks

Response codes -

Service updateTask

Description Update a task field(s)

Request URL http://../API/bpm/task/<task ID>

Request method PUT

Request payload Task fields to update (forbidden fields are : caseId, processId, name,
executedBy, id)

Response payload -

Response codes -

7.2.2.6 timerEventTrigger

JSON representation of the resource:

{

"id": the ID of the timer returned,

"eventInstanceId": the ID of the event instance to which this

trigger is related,

"executionDate": the long value of the next execution date (number

 Page 61 / 75

of milliseconds from January 1st, 1970 00:00:00),

"eventInstanceName": the name of the event instance to which this

trigger is related

}

Services to operate on the resource:

Service searchTimerEventTriggers

Description Search for timer event triggers related to a case

Request URL http://../API/bpm/timerEventTrigger

http://../API/bpm/timerEventTrigger?caseID=<case ID >

Request method GET

Request payload -

Response payload JSON representation of a list of timer event triggers

Response codes -

Service updateTimerEventTrigger

Description Specify the next execution date of a timer event trigger.

Request URL http://../API/bpm/timerEventTrigger/<timerEventTriggerID>

Request method PUT

Request payload A JSON representation of a long value with attribute name
"executionDate"

Response payload The actual long value corresponding to the next execution date of the
timer event trigger, as a long value

Response codes -

http://../API/bpm/timerEventTrigger
http://../API/bpm/timerEventTrigger?caseID=%3ccase
http://../API/bpm/timerEventTrigger/%3ctimerEventTriggerID

 Page 62 / 75

7.2.2.7 caseVariable

JSON representation of the resource:

{

"name":"name of the variable in the case",

"description":"Detailed description of the case variable",

"value":"the current value of the case variable",

"case_id":"ID of the case this variable belongs to",

"type":the Java type of the variable"

}

Services to operate on the resource:

Service readCaseVariable

Description Search for case variables from its case ID, or find a single case
variable from case ID and variable name

Request URL http://../API/bpm/caseVariable/<caseID>/<variableName>

Request method GET

Request payload -

Response payload JSON representation of a case variable

Response codes 500, if an exception occurs during the find

Service searchCaseVariables

Description Search for a list of case variables

Request URL http://../API/bpm/caseVariable?p=<firstPageNumber>&c=<pageSize>

Request method GET

Request payload -

http://../API/bpm/caseVariable/%3ccaseID%3e/%3cvariableName
http://../API/bpm/caseVariable?p=%3cfirstPageNumber%3e&c=%3cpageSize

 Page 63 / 75

Response payload JSON representation of a list of case variables

Response codes 500, if an exception occurs during the find

Service updatecaseVariable

Description Update a case variable value.

Request URL http://../API/bpm/caseVariable/<caseID>/<variableName>

Request method PUT

Request payload A JSON representation of a case variable (“type” and “value” are
mandatory attributes)

Response payload -

Response codes 200, if Ok.

500, if an exception occurs during the find.

7.2.3 BDM management

7.2.3.1 businessData

JSON representation of the resource:

{

"persistenceId": number,

"attributeName":attributeType

...

}

Services to operate on the resource:

Service readBusinessData

Description Get the business data specified by its identifier: “businessDataType”
(e.g. com.company.model.Client) and “persistenceId”

Request URL http://../API/bdm/businessData/<businessDataType>/<persistenceId>

Request method GET

http://../API/bpm/caseVariable/%3ccaseID%3e/%3cvariableName
http://../API/bdm/businessData/%3cbusinessDataType%3e/%3cpersistenceId

 Page 64 / 75

Request payload -

Response payload A business data in JSON format

Response codes 500, when business data identifier is not valid

Service readBussinessDataAttribute

Description Get the business data attribute of business data according to its identifier and
attribute name.

Request URL http://../API/bdm/businessData/<businessDataType>/<persistenceId>/<attribute
Name>

Request method GET

Request payload -

Response
payload

A business data in JSON format

Response codes 500, if an exception occurs during the find

7.2.3.2 businessDataQuery

There is no JSON representation relevant for this resource.

Services to operate:

Service executeBusinessDataQuery

Description Execute a query on a business data resource. It can be a default or custom
query, previously defined in the Bonita BPM Studio.

Request URL http://../API/bdm/businessData/businessDataType?q=queryName&p=0&c=10&f
=param=value

Where:

 businessDataType - the fully-qualified business data type name

 q=queryName - the query name

 p=0 - the page number

http://../API/bdm/businessData/%3cbusinessDataType%3e/%3cpersistenceId%3e/%3cattributeName
http://../API/bdm/businessData/%3cbusinessDataType%3e/%3cpersistenceId%3e/%3cattributeName
http://../API/bdm/businessData/businessDataType?q=queryName&p=0&c=10&f=param=value
http://../API/bdm/businessData/businessDataType?q=queryName&p=0&c=10&f=param=value

 Page 65 / 75

 c=10 - the maximum number of results in the page

 f=parameter=value - sets the parameter value according to business data
query parameters defined in Bonita BPM Studio

Request method GET

Request payload -

Response
payload

JSON representation of query result

Response codes -

7.3 LETAPP interfaces

Service LOGIN

Description Access the system

Request URL http://API/LogIn/?{userName}/{password}

Request method GET

Request payload -

Response payload Verify if the UserName and Password are correct

Response codes -

Service sendChatMessage

Description Send a message

Request URL http://API/sendChatMessage/

Request method PUT

Request payload The full JSON representation of the message

Response payload

Response codes -

 Page 66 / 75

Service ReceiveChatMessage

Description Receive a message

Request URL http://API/recievedChatMessage/

Request method GET

Request payload The full JSON representation of the message

Response payload The full JSON representation of the message

Response codes -

Service View task related content

Description View task related content

Request URL http://API/taskDetails/?taskId={taskId}

Request method GET

Request payload The full JSON representation of the Task content

Response payload The full JSON representation of the Task content

Response codes -

Service View Tasks

Description View all user tasks

Request URL http://API/getAllTasks/

Request method GET

Request payload The full JSON representation of the Task

Response payload The full JSON representation of the Task

Response codes -

 Page 67 / 75

Service View SubTasks

Description View all user tasks

Request URL http://API/getAllSubTasks/?taskId={taskId}

Request method GET

Request payload The full JSON representation of the SubTasks

Response payload The full JSON representation of the SubTasks

Response codes -

Service Add task related content

Description Add task related content

Request URL http://API/addTaskContent/?taskId={taskId}

Request method PUT

Request payload The full JSON representation of the Task

Response payload The full JSON representation of the Task

Response codes -

Service Get statistical and historical data

Description Display statistical and historical data

Request URL http://API/getData/

Request method GET

Request payload The JSON list of historical and statistical data

Response payload The JSON list of historical and statistical data

Response codes -

 Page 68 / 75

Service Notify upcoming events

Description Get notified about upcoming events

Request URL http://API/getUpcomingEvents/

Request method GET

Request payload The JSON list of upcoming events

Response payload The JSON list of upcoming events

Response codes -

Service General Status View

Description Get informed about the general task status for users

Request URL http://API/getUserStatus/{userName}

Request method GET

Request payload The JSON list of all the task with their status related to the user

Response payload The JSON list of all the task with their status related to the user

Response codes -

7.4 LETCRITICAL interfaces

Depending on the sensors that will be selected to be used by the LetCritical component the exact
format of the messages to be sent might vary. From a General perspective there are two types of
messages:

1) Push Data messages. These are the message that will be sent from the smartphone to the
server for further processing.

This is a JSON message with at least the following fields:

{

"id": the ID of the user,

 Page 69 / 75

"sensorName": descriptive name of the sensor,

"sensorType": from a fixed enumeration (eg. HeartRate,

BloodPressure, etc.),

"time": the long value of the data generation (number of

milliseconds from January 1st, 1970 00:00:00),

"value": Sensor value (type determined by SensorType)

...

}

2) Request/ReplyCritical Events. These are messages sent from the central server to the
phone when a critical event is detected. The server expects an answer on these messages,
if no answer is given within a predefined timeframe an alarm will be raised (see LetAlarm in
the following paragraph).

{

"id": the ID of the critical event,

"type": the type of critical event,

"description": the description of the specific critical event,

will be displayed to the user

"userId": the ID of the user,

"time": the long value of the detection time of the critical event

(number of milliseconds from January 1st, 1970 00:00:00),

...

}

The reply (if any) consist of a following JSON String

{

"id": the ID of the critical event,

"userId": the ID of the user,

 Page 70 / 75

"response": true | false (real critical event or false alarm)

...

}

7.5 LETALARM interfaces

Service Send alarm

Description Send critical alarm

Request URL http://LETALARM/SendAlarm/

Request method PUT

Request payload The JSON structure of an critical alarm

Response payload

Response codes -

Service Receive alarm

Description Get critical alarm

Request URL http://LETALARM/RecieveAlarm/

Request method GET

Request payload The JSON structure of an critical alarm

Response payload The JSON structure of an critical alarm

Response codes -

Service Attend alarm

Description Inform that the user will be attending the alarm

Request URL http://LETALARM/AttendAlarm/?alarmId={alarmId}

 Page 71 / 75

Request method PUT

Request payload -

Response payload

Response codes -

Service Identify the location of user

Description Identify the location of user

Request URL http://LETALARM/emergencyLocation/?userId={userId}

Request method GET

Request payload The JSON structure of the user location

Response payload The JSON structure of the user location

Response codes -

7.6 LETTRAIN I interfaces

The LetTrain I module is designed as a read-only application based on LetApp. Therefore, this
module will use a subset of the interfaces presented for the workflow engine. Specifically, those
classified as Read or Search operations in Section 7.2.

7.7 Monitoring manager

Since the monitoring manager is the backend for the LetCritical component its interfaces are
described in Section 7.4

 Page 72 / 75

8. DATA MODELS

In this Section, the data model that corresponds to the access to the main components of the
LetItFlow system (e.g. tasks, processes, users, etc.) is presented. The conceptual ER diagram in

Figure 19 represents such data model.

Aiming at better understanding the data model, we present some of the key concepts that the
entities in the diagram represent:

- Process: A process is a sequence of tasks. The sequence has a start and an end, and can
contain decision points, known as gateways. A process definition is constructed as a flow
diagram (based on BPMN 2.0 standard).

- Task: A task is an activity in a process. Tasks may be performed by people (human tasks,
which normally involve using a form to enter data or to receive information) or automatically
(service tasks, invisible to users during normal operation).

- Case: A case is an instance of a process. This means that a process might be executed in
parallel by different users, and the workflow engine maintains independent information for
each instance.

- Organization: The set of all the users who play a part in all the processes that model the
business uses. Typically, the organization corresponds to the hierarchy of teams within the
business, so an organization is characterised by groups, users and the role of users in the
groups.

- Actor: An actor is a placeholder specified in the process definition for the users. Using an
actor instead of specifying real people directly makes the process definition more flexible:
when the list of users changes, only the process configuration need to be changed. Making
the connection between the actor definition and the set of users is called actor mapping.

Now that some of the key concepts are clearer, we shortly describe the relationships between the different
entities in the diagram of

Figure 19. The entity “role” represents the role of a user in a group, and “group” represents the
group a user belongs to. There is a membership when a user belongs to both (a group and a role).
A user may have more than 1 membership defined (i.e. different roles in different groups). An
example of a membership might be: Mary (the “user”) is a member (the “role”) of the Laboratory
department (the “group”). Therefore, using the “membership” entity, the developer may characterise
any organisation by distributing the staff (i.e. user) in different departments (i.e. group) and with
different functions (role).

 Page 73 / 75

Figure 19. BPDM for the workflow engine

The “actor” entity has a similar meaning as the actor of a use case definition; it is a generic
categorization of the person who can perform a process. Examples of actors in LetItFlow might be a
nurse, a laboratory technician, etc. By using the “actorMember” entity, the developer will be able to
establish the mapping between a generic actor of a process and a specific user, group or role.

The “process” entity models a process, which is a sequence of tasks represented as a flow diagram.
A “case” entity represents a process instance. The “case” entity is related to a “process” and also to
a “user” entity, which represents the user that started the case.

Regarding the “task” entity, there is a relation to the process and case which contain the task, and
also to the user who executes the task (only in case it has been already executed). Optionally, it can
be defined the actor that can execute this task.

A “case” may contain a timer trigger which serves to execute events based on timers. Timer events
are used: to start a process on a repeating schedule, at a fixed date and time, or after a specified

 Page 74 / 75

interval (start timer), to delay a process for a set amount of time or until a specific date and time
(intermediate timer) or to count down during a task until a deadline is reached (boundary timer or
non-interrupting boundary timer).

Finally, regarding variables, we establish a difference between variables with Process scope
(“caseVariable”) and variables with Business scope (“businessData”). The “caseVariable” entity
refers to Process variables which can be used globally within a Process instance, or limited to a
specific Task. In this case, the data will not exist after the Process instance is completed. On the
other side, business variables are used to represent business concepts (defined in a Business data
model that can be created with the Bonita BPM Studio) which will be persisted automatically. These
data can exist outside Process instances and be accessible to multiple Processes. We represent
this kind of data with the “businessData” entity. Apart from this, the Bonita BPM Studio allows to
define customized queries for retrieving the business data. Such queries are represented by the
“businessDataQuery” entity.

 Page 75 / 75

9. BIBLIOGRAPHY

1. https://developer.android.com

2. http://www.iso.org/iso/iso8601

3. http://www.bonitasoft.com/

4. http://www.json.org/

5. http://www.slideshare.net/kmstechnology/introduction-to-agile-software-testing.

6. https://www.gov.uk/service-manual/making-software/testing-in-agile.html.

7. Antony Colfelt (2010). Bringing User Centered Design to the Agile Environment
(http://boxesandarrows.com/bringing-user-centered-design-to-the-agile-environment/).

https://developer.android.com/design/wear/index.html
http://www.iso.org/iso/iso8601
http://www.bonitasoft.com/
http://www.json.org/
http://www.slideshare.net/kmstechnology/introduction-to-agile-software-testing
https://www.gov.uk/service-manual/making-software/testing-in-agile.html
http://boxesandarrows.com/bringing-user-centered-design-to-the-agile-environment/

