

AMBIENT ASSISTED LIVING JOINT PROGRAME

AAL-2013-6-039

SeniorLudens

Serious Games development platform for older workforce
training and intergenerational knowledge transference

D1.3

Scenario, Task and Game Files
descriptors

Workpackage WP1 - System functional and technical requirements

Lead beneficiary CBIM

Editor(s)

Dani Tost- CREB-UPC

Ariel von Barnekow – CREB-UPC

Rodolfo Nuñez – CREB-UPC

Salvador Aguilar - INDRA

Contributor(s)

Dani Tost – CREB-UPC

Ariel von Barnekow – CREB-UPC

Rodolfo Nuñez – CREB-UPC

Reviewer(s) Gary Honegger - YR

Release Date 08/2014

Version V1.1

Circulation
Project Partners, AAL Control Management Unit, and National Funding
Agencies.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 2
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Table of Contents

ABSTRACT ... 3

1- SENIORLUDENS GAME KIT ... 4

1.1- DEFINITION ... 4
1.2- STRUCTURE .. 5

2- COMPONENTS .. 6

2.1- WORLD, SCENARIOS AND CONFIGURATIONS ... 6
2.2- OBJECTS .. 8

2.2.1- Objects Definition ... 9
2.2.2- Objects Instances .. 11
2.2.3- Visual Objects .. 12

2.3- ACTIONS ... 12
2.3.1- Action Definitions ... 13
2.3.2- Implementation of actions .. 14
2.3.3- User intended actions .. 15
2.3.4- Visual Actions .. 16

2.4- THE TASK ... 16
2.5- TRAINING PROGRAM .. 18

3- FILE DESCRIPTORS ... 20

3.1- OVERVIEW .. 20
3.2- PROJECT FILE DESCRIPTOR .. 20
3.3- WORLD DESCRIPTOR .. 20
3.4- SCENARIO CONFIGURATION DESCRIPTOR .. 22
3.5- TASK DESCRIPTOR .. 22
3.6- TRAINING PROGRAM DESCRIPTOR ... 24
3.7- XML SCHEMAS ... 24

3.7.1- Base Schema ... 24
3.7.2- World Schema ... 26
3.7.3- Scenario Configuration Schema .. 28
3.7.4- Task Schema ... 28
3.7.5- Training Program Schema ... 30

FIGURES AND TABLES .. 32

ACRONYMS .. 33

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 3
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Abstract

This document contains a description of Senior Ludens Game Kit: its structure, classes and the
file descriptor files that allow exporting its definitions to other components of SeniorLudens.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 4
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

1- SeniorLudens Game Kit

1.1- Definition

The SeniorLudens Game Kit (from now on SLGK) is two-fold: on the one hand, it provides an
abstract definition of the virtual environments and the training activities that can be performed in
them, and on the other hand, it implements these definitions on top of a game engine in order to
allow the creation of training games.

Figure 1 illustrates the relationship of SLGK with the others components of SeniorLudens. The
creation of a training program involves 6 steps (first row of the figure): the creation of the virtual
environment called world that includes all the objects and actions available; the configuration of
scenarios using a particular set of objects of the world; the definition of the training tasks and
their testing through a simulation tool; the training itself and the analysis of results. Each of
these steps requires specific components of SeniorLudens (second row of the figure): the
Scenario Editor, the Task Editor, the Simulator, the Trainer and the Analysis Tool. The third row
of the figure shows the different roles of users using these components.

Three components of the system are games directly built on top of SLGK:

 The Scenario Editor, which is used by Scenario Designers to configure virtual
environments by putting objects at precise locations;

 The Simulator that implements a task designed by Game Designers using the Task
Editor component;

 The Trainer, which is the actual training game composed of different tasks.

In addition, two components: the Task Editor and the Training Program Designer use the
definitions of the world and its components provided by the SLGK. These definitions are
exported from the SLGK as XML file to feed SeniorLudens database in order to be used by the
Task Editor and the Training Program Designer.

World Creation
Scenario

configuration
Task Design

Training Program
Design

Training Data Analysis

Designer
Scenario
Designer

Game Designer Trainer

Platform
Manager

GameKit Scenario Editor Task Editor
Training

Programm
Designer

Trainer

Simulator

Analysis Tool

Trainee Trainer

Role

Component

Process

Figure 1: Senior Ludens components

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 5
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

1.2- Structure

The SeniorLudens Game Kit provides an abstract layer of definition of the components of a
game and an interface layer on top of the game engine Unity. This architecture presents two
main advantages: first, the abstract layer eases the definition of games because it does not
require technical knowledge of the underlying game engine, and second, since the abstract
layer is independent from the game engine, if it was necessary to change the game engine, only
the interface layer would need to be reimplemented.

This architecture is shown in Figure 2: on the bottom layer the graphical API GL; above, the
game engine (Unity 3D in the case of the current implementation or another); above, SLGK
composed of two layers: the abstract model (Senior Ludens Core) and the interface to unity
(Senior Ludens Interface to Unity); finally on top the games built on SLGK, in particular, the
Scenario editor, the Simulator (test tasks) and the trainer (the training games themselves).

SeniorLudens Games

SeniorLudens Game Kit

Game Engine
Unity 3D

GL

Game Engine
Others

Scenario Editor Simulator Trainer

SeniorLudens Interface to
Unity

SeniorLudens Interface to
others

SeniorLudens Core

Figure 2: Structure of SeniorLudens Game Kit

In addition, the SeniorLudens Core is defined at two levels: the abstract definition classes and
the specific instances of elements (scenes, objects, actions) that compose a game in run-time.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 6
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

2- Components

2.1- World, Scenarios and Configurations

The aim of SeniorLudens is to be usable in a diversity of training applications. Every training
case has associated a world that defines the objects, actions and characters needed for the
type of training that must be done in the world. For instance, three SeniorLudens pilots address
the traditional fabrication of cheeses, the rehabilitation of patients and a metaphor of project
management through gardening activities. The world associated with the fabrication of cheese
requires the definition of the character cheese maker that will be driven by the trainee. It needs
objects such as oven, pans, spoons and actions such as moving, whipping and cooking that
involve characters and actions. The world associated with rehabilitation requires various
characters: the rehabilitator trainee and patients. It also needs objects such as the patient heart
rate, a bicycle, a treadmill, a rehabilitation program and actions such as check heart rate or
program an exercise.

Finally, for the project management pilot, the world will represent plots, vegetables, gardening
tools such as pruning scissors and ravels. The characters will be the gardener, the warehouse
manager, and customers. Finally, required actions will be planting, watering, cutting among
others.

A scenario is a concrete virtual environment based on the definition of a world. It represents a
virtual 3D space composed of objects characters and actions defined in the corresponding
world. Many different scenarios can be built on the basis on the same world definition, therefore,
the relation world:scenario is 1:n.

Some training tasks may require different training spaces. For instance, in the rehabilitation use
case, it may be necessary to train in the reception room, in a cardio vascular training room and
in a medical consultancy room. To support these tasks, either a unique scenario made of
different spaces can be built, or each space can be built as a separate scenario. The latter
approach presents the advantage of easing the re-use of scenarios, and from the point of view
of training, it avoids having to navigate from one space to the other. In order to support the
second approach, SeniorLudens Game Kit allows linking a training task to one or more
scenarios. Scenarios that are connected to others must define actions of transition from one
scenario to the other.

The ¡Error! No se encuentra el origen de la referencia. describes the initial content of the
corresponding virtual space: the objects that are inside, their location and state. A part of the
scenario remains usually invariable, typically structural elements such as walls, doors, windows,
closets and in general heavy furniture. Another part of the scenario can vary in its contents as
well as in the position and orientation of the objects. For instance, a kitchen scenario can have
different initial contents of the fridge object. This variable part of the scenario is called ¡Error!
No se encuentra el origen de la referencia.. For each scenario, various configurations can
exist. These different configurations are defined in the Scenario Editor. Thus, the ¡Error! No se
encuentra el origen de la referencia. Class is the definition of the location (position and
orientation) and state of the variable part of objects and characters of the corresponding
scenarios. Figure 3 illustrates the definition of a world, a scenario and a configuration.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 7
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 3: World, scenario and configuration

Finally, the Scene Instance is defined in run-time of a game. It is the object representing the
actual scenario created with a specific configuration. It is composed of the set of object and
character instances defined in the scenario and the set of objects and characters instances
defined in the corresponding configuration (see Figure 4).

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 8
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 4: World definition and Scene Instance

2.2- Objects

Objects are entities of the World that participate in Actions. The Object Definition Class defines
the characteristics of the objects and the actions in which they can participate. An Object
Instance is a specific realization of a particular object definition. Finally, Visual Objects link
objects to their graphical models in the corresponding game engine (Unity 3D in the current
implementation). Not all objects have visual representations, some are purely abstract concept.
In addition, objects may have more than a visual representation (see below). Therefore, the
relationship object:visual object at the definition level as well as at the in-game instances level is
1:n.

Figure 5 shows the relationship between object definition, object instances and visual objects.

Figure 5: Object and Visual Object definition and instances

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 9
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

2.2.1- Objects Definition

Objects have particular attributes that can be queried, for instance the value of the temperature,
or the text written on a blackboard. They are also labelled according to different classification
criteria (vegetable, tool, fresh…). These attributes and labels are defined in the Object Definition
Class.

Objects can be in different discrete states: for instance a door can be opened or closed, an egg
can be raw or cooked. The Object Definition contains a state diagram graph in which nodes are
states and edges are actions. Transformation actions that change the state of an object
correspond to edges between states of this object, and actions that do not change states are
loops. Object instances have a specific state at each moment of the game. Thus, if a
transformation action lasts more than an iteration of the game loop, the object instance being
transformed stays in the original state until the transformation has occurred.

Figure 6 illustrates the definition of an object. The object egg has 7 states: raw with shell, raw
without shell, fried (without shell), burnt (without shell), cooked soft (with shell), cooked medium
(with shell) and cooked hard (with shell). In every state, two self-edge actions are available: to
drag with and to put on. The instruments needed to drag the egg in its different states are
different, though. For instance, to drag the egg in the fried state, the instrument needed is a
skimmer, whereas, a raw egg with shell can be dragged without any instrument. The action “to
boil” changes the state of the egg: after a given time since the action has been launched, the
egg passes from raw to soft cooked; after another while to medium; then to hard.

Objects have particular attributes, for instance the value of the temperature, or the text written
on a blackboard. These attributes can be related to attribute values of other objects so that their
value varies accordingly. For instance, the object thermometer has the attribute temperature
value. This attribute can be connected to the attribute temperature of the oven. Thus, if the
temperature of the oven increases, the temperature of the thermometer will also increase.

Figure 6: An example of an object's state diagram

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 10
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Finally, objects can be purely abstract concepts (time, temperature) or they can have a visual
representation. In the latter case, the visual representations are classified by styles. An object
can have one or more styles and each of its state is associated to as many visual
representations as object’s styles. These visual representations can be shared by different
states. Table 1 illustrates the relationship between objects and their visual representation for the
egg object. The states raw with shell, soft cooked, medium cooked and hard cooked have the
same visual object. The object egg has two different representations styles.

Table 1: An example of the relationship between objects and visual objects

Figure 7¡Error! No se encuentra el origen de la referencia. summarizes the main information
associated to an object definition class.

States Style 1 Style 2

Raw egg with shell

Soft cooked egg

Medium cooked egg

Hard cooked egg

Raw egg without shell

Fried egg

Burnt egg

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 11
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 7: Simplified class diagram of the Object Definition Class, the Object Instance and the
Visual Object.

2.2.2- Objects Instances

Object instances follow the pattern of the corresponding object definition. At any time, they are
at a specific state of the state diagram. They are associated to a sub-state diagram of the
corresponding object definition that contains only edges corresponding to actions actually
available on the object at a given moment of the game. This sub-state diagram is needed to
restrict some actions in order to ease the realization of tasks and in order to avoid ambiguities in
the interpretation of the actions to be done. This is illustrated in Figure 8: the bottle object has
been defined as having two possible states and three actions. In a particular scenario, a bottle
can be instantiated with this complete behaviour (top right). In another (middle right), the bottle
has only one possible state and one action. In this scenario, it will not be possible to do anything
more with the bottle than to pick it. In the third case, the bottle cannot be picked but opened and
closed. Since the behaviour of the objects can change during a game, the sub-state diagram of
an object instance is modifiable dynamically during the game, by copying edges and states of
the reference state diagram of the object definition or removing them.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 12
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 8: Complete state diagram of the object definition and three possible state diagrams of
object instances

If they are visual, they are linked to as many visual representations as visual styles the object
has. Moreover, they have geometrical and topological properties that they retrieved from the
corresponding visual object, for instance, the position of the centre of the object in the 3D. The
position is needed to evaluate the fulfilment of actions such as “put the object A at distance XX
of the object B” or “stop [the trainee’s avatar] at a distance X from the object Y”. Other
geometrical properties could be retrieved from the visual object information and stored as object
instance attributes, if needed.

In addition, object instances store information of all the instances of objects that are on top of
them or inside them (parented objects). They also store information of the object instances on
top or inside which they are located (parenting objects). These relationships allow querying for
the position of objects instances in relation to others, which is need to accomplish or validate
actions such as “to put on”, “to put inside”, “to hang on”.

2.2.3- Visual Objects

Visual objects are implementations of visual representations. In SeniorLudens GameKit, they
are implemented in the interface layer to Unity. They are a link to the corresponding object of
the Game Engine, specifically, in the current implementation to a Unity Object.

2.3- Actions

Actions are events that can occur in a scenario yielding to changes in the objects: change of
attribute values, state transformations, geometrical transformations, etc. At the abstract level,
action definitions express precisely the conditions needed for an action to be executed: who can
realize it, on which objects, for whom and in which circumstances.

During a game, users interact with the objects of the scenario in order to launch actions. For
instance, they click on an apple to pick it, or click on the treadmill to stop it. Thus, the game
must interpret from the input which action the user wants to be done. This action is called User

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 13
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Intended Action. The process of identifying the User Intended Action involves an analysis of the
situation in which the user input has been done (clicked object, user avatar’s position and held
objects) in relation to the actions defined on the objects involved in the input action.

Similarly to objects, actions can be visual or not: a modification of an attribute, for instance may
not be reflected graphically in the environment, but moving an object is visual. Therefore, some
actions are associated to Visual Actions that are in charge of executing the corresponding
Game Engine events.

Finally, in a training game, at each moment of the game, the user is expected to do specific
actions. The actions that the user is expected to do at a given instant of the game are called
Task Actions.

Figure 9 illustrates the process followed in a game from a user input to the execution of an
action. The user input information is parsed with the Action Definitions in order to determine the
User Intended Action. Then, if the action is visual, a feasibility analysis is performed to
determine if it possible to realize the action graphically. For instance, if the User Intended Action
is to drop an object on the table but the table is full, the action is rejected. If the action is
feasible, the action is compared to the expected Task Actions defined by the trainer. If the User
Intended Action matches one of the Task Actions, it is executed and scored accordingly.
Otherwise, it is executed or not depending on if the level of difficulty of the tasks allows trainee
to realize incorrect actions.

Figure 9: Differences between Actions Definition, Visual Action and User Intended Actions and how
user input is processed during the game execution to yield to actions

2.3.1- Action Definitions

Actions are defined on the basis of classical grammar analysis. Specifically, actions represent
complete propositions composed of five grammatical components:

<subject> <verb> <direct object> <indirect object> <circumstantial

complements>

Where:

 subject is the characters or objects that can launch the action (for instance: trainee
picks an apple);

 verb is the verb that defines the action; It is also the identifier of an action;
 direct object is any object of the scenario that receives the action (for instance: trainee

picks an apple)

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 14
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 indirect object, i.e. any character of the scenario to or for whom the action is
performed (for instance: trainee attaches the blood pressure sensor to the patient);

 complements give precisions on the action. They can be of three types:
o instrument: trainee pick the cheese with a fork

o place: trainee drop the notebook on the table

o time: trainee move the cheese fast; trainee go fast to the table

In the object definition state diagram, the actions associated to edges of the graph store
information on the role of the object in the corresponding action (subject, object or complement).

Actions that have the same definition except for the verb and the same implementation are
called alias. They are used to enrich the training scenario allowing the use of real life verbs even
though in the virtual world they have the same implementation. Examples of alias actions are
those corresponding to the verbs to chop and to cut that are absolutely identical in the virtual
world:

<subject: any character> <verb: to chop/to cut> <direct object:

vegetable|fruits> <instrument: knife>

Actions that have the same definition except for the verb but different implementation are called
Equivalent Actions. Equivalent Actions can produce ambiguities in the identification of the User
Intended Action. Examples of Equivalent Actions are those corresponding to the verbs to cut
and to peel that produce different results in the virtual world:

<subject: any character> <verb: to peel/to cut> <direct object:

vegetable|fruits> <instrument: knife>

2.3.2- Implementation of actions

The implementation of actions is based on the following processes:

 Creation of a new instance of an object (e.g. trainee breaks an egg yields to the
creation of two new instances of a shell object; system creates a panel yields to the
creation of a new instance of the object panel)

 Destruction of an object instance (e.g. trainee throw a piece of paper in the garbage
yields to the removal of the piece of paper instance)

 Creation and removal of a parental relationship (e.g. trainee picks an apple from the
plate yields to the destruction of the parenting relationship of the apple with the plate
and the creation of a parenting relationship of the trainee’s avatar and the apple)

 Change object state (e.g. trainee opens the door, yield to a change of state of the door)

 Change object attributes (e.g. trainee resets timer yields to assigning the value 0 to the
attribute time of the object timer)

In order to promote the re-use of the code, the implementation of actions can be defined as
compositions (composite actions) of other simpler actions (basic actions). For instance, trainee
breaks an egg against a pan is the composition of:

 the action “break egg” , which is in fact a state transition from raw+full to egg_shell,

 the action “create egg instance” , in state “raw without shell”

 the action “drop egg in the pan”, which consists of an animation and the creation of a
parental relationship between the pan and the egg.

The composition of atomic actions is based onto two schemes: sequential composition in which
atomic actions are done one after the other and parallel composition in which the atomic
actions are done at the same time.

.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 15
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

2.3.3- User intended actions

The retrieval of the requested action from the user input is based on the analysis of the

circumstances of the input. Specifically, the user input is a triplet: <clicked object, user

avatar, input frequency>. The clicked object provides information on its state and thus

on the actions in which it can be involved. It also provides information on its position. The user
avatar provides data on its position, the objects that he/she is carrying virtually, their current
state and allowed actions and the previous action that he has done. From this input at most one
unique user intended action must be found.

The solution of the analysis is not unique, because equivalent actions can be found. As an
example a user click on an apple with a knife could yield to two equivalent actions to cut and to
peel. In this case, the analysis stage chooses between the equivalent actions according to a
priority system.

Depending on this analysis, the clicked object can be considered as:

o Direct object: e.g. trainee clicks on pencil corresponds to:
<subject: trainee> <verb: picks> <direct object: the pencil>

o Indirect object: e.g. trainee clicks on a patient avatar with a rope corresponds to:
<subject: trainee> <verb: gives > <direct object: a rope>

<indirect object: to the patient>

o Complement of place: e.g. the trainee clicks on the door from far away, corresponds to:

<subject: trainee> <verb: goes > <place complement: to the door>.

Observe that if the door is within the user’s avatar reach, the same interaction will be
interpreted as:

<subject: trainee> <verb: opens> <direct object: the door>.

Similarly, the carried object can be considered as:

o Direct object: e.g. when the user clicks on the table with a knife the corresponding user
intended action is:
<subject: trainee> <verb: drops> <direct object: the knife>

<place complement: on the plate>

o Instrument complements: e.g. when the user clicks on a fried egg with a skimmer the
corresponding requested action is:
<subject: trainee> <verb: picks> <direct object: the egg>

<instrument complement: with the skimmer>.

When the object carried by the user hosts another objects, this object can also intervene in the
interpretation of user intended action:

o Direct object, e.g. when the user clicks on the pan with a skimmer carrying an egg, the
corresponding user intended action is:
<subject: trainee> <verb: drops> <direct object: the egg>

<instrument complement: with the skimmer> <place complement: on

the plate>

Observe that the latter example, could have been interpreted as <subject: trainee>
<verb: drops> <direct object: the skimmer> <place complement: on the

plate>. Because of the parenting relationship, the skimmer would have been dropped with the

egg on top of it. It is a clear example of equivalent actions. The analysis process will choose one
or the other according to a disambiguation mechanism based on priorities.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 16
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

2.3.4- Visual Actions

Visual actions are simple launchers of the graphical actions executed by the Game Engine.
These graphical actions are compositions of:

o Animations
o Geometrical transformations (grab and rotate)
o Change of texture or colour
o Change of graphical model
o Removal of graphical objects
o Creation, update and removal of the topological relationship of hosting.

2.4- The task

The task represents the narrative in the environment. It is expressed in terms of expected
actions. It expresses the desired behaviour of objects and characters, the required trainee
actions and the reaction of objects and characters to these actions. It is also associated with the
scene configurations in which it works.

Figure 10 shows a diagram of the structure and components of a task.

Figure 10: Structure of a task

A task is divided into three stages: introduction, development and conclusion. The introduction
stage is devoted to the initial setting of the scene and the introduction of the game, generally
with welcome and instruction messages; the development is the game itself and the conclusions
usually shows results or evaluation messages.Each stage is divided into tracks composed of
independent nested blocks.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 17
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

The tracks are structured in blocks. There are two types of blocks: container blocks and action
blocks. The former ones nest other blocks according to different types of structure, whereas the
latter ones are atomic and represent actions to be done.

Blocks express a relationship of temporal dependency between the inner blocks. There are four
types of blocks:

- Sequence: blocks into a sequential block must be performed one after the other. User
actions that do not follow the sequential order are considered incorrect.

- Parallel (N, M): a number M of the N blocks of the parallel block (M<=N) must be
performed, no matter in which order.

- Repeat (B): blocks in the repeat block must be repeated while the Boolean expression
B is fulfilled.

- Conditional (B): blocks into the conditional blocks must be performed if the Boolean
expression is true.

The Boolean expressions required in the Repeat and Conditional blocks are composed of
Boolean sub-expressions operated with the Boolean operators and, or and not. The sub-
expressions are made of relationship expressions on the object and character attribute values
with the relational operators >, <, ≤, ≥, =, ≠.

In theintroduction stage the initial setting of the scene is performed. Typically, in this stage, the
attribute values of some objects are set, some objects are put in a given state and a message or
video is shown. This stage contains only actions performed by the system. The development
stage contains a description of the task itself. It is composed of various independent tracks, one
of which expresses the expected user actions. Finally, the last stage devoted to a summary of
the game results contains only system actions. Typically, it consists on posting results summary
messages and system actions needed to finish the task. As in the introduction stage, there are
no user actions in the conclusion track.

Figure 11: Example of a task structure shows a simplified example of a task structure in the
rehabilitation pilot case. Training occurs in a gym with only one patient and treadmill. In the
introductory stage the system shows an introductory message. Then, the patient goes to the
treadmill and gets on it. The development track is composed of two tracks. Track 1 is devoted to
the patient that expresses that the patient will run whenever the treadmill is on. Track 2
represents the expected trainee behaviour: first the trainee should turn on the treadmill. Then, if
the patient heart rate is higher than 100, he must stop the treadmill and say good bye to the
patient. Otherwise, the trainee will wait until the treadmill will stop at the end of the program and
say good bye to the patient. Finally the conclusion stage consists of a unique system action,
showing a message.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 18
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 11: Example of a task structure

2.5- Training program

A training program is a composition of tasks. It is defined as nested blocks containing
programmed tasks and levels of difficulty (see Figure 12). The levels of difficulty are defined as
a combination of different factors: time multiplier to increase the allowed time, type of feedback,
speed of navigation, allowed actions and so on. The levels of difficulty are defines as a list of
tuples, label, value.

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 19
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figure 12: Simplified class diagram of the training program

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 20
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

3- File Descriptors

3.1- Overview

This section describes the files used to share information between components. In the previous
sections we described the different data classes, and now we will introduce where each data
class is created and which components use it.

GameKit Scenario Editor Task Editor
Training

Programm
Designer

Trainer Analysis ToolSimulator

World
Definition

Project

Web Platform

Scenario
configuration

Task Trainee Results
Training

Programm
Results Report

Simulation
Results

World Creation Scenario configuration Task Design Training Program Design Training Data Analysis

Figure 13 - File Descriptors overview

This figure represents the components created by the game kit (Scenario Editor, Simulator,
Trainer) using dash-arrows, the file descriptors using white boxes (project, world definition,
scenario configuration, and so on), who creates the descriptor with an arrow from the
component to the descriptor (Game Kit → World Definition), and the descriptors used by each
component with and arrow from the descriptor to the component (World Definition → Task
Editor).

3.2- Project File Descriptor

To create new world the first thing that the developer/manager will need to do is create a new
game entry in the platform, this will generate the Project File which contains the project name,
description, version and a unique identifier…

This information will be used as input for the Game Kit during the world creation process to
associate the generated files with the game.

Example:

<?xml version="1.0" encoding="utf-8"?>
<project xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <meta>
 <name>D1.3 Project Example</name>
 <copyright>SeniorLudens</copyright>
 </meta>
 <id>D1.3</id>
 <version>0.1</version>
 <key>QWERTY123124332412341</key>
 <secret>TOPSECRETTOKEN</secret>

</project>

3.3- World Descriptor

Once the game has been designed all the information about the objects, actions, scenes, needs
to be stored to be used latter by the Task Editor.

This descriptor will be generated by the Game Kit and will be included on the generated
components: Scenario Editor, Simulator and Trainer.

The next example represents a subset of the Figure 8: Complete state diagram of the object
definition and three possible state diagrams of object instances:

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 21
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

<?xml version="1.0" encoding="utf-8"?>
<world
 version="0.1"
 app="d1.3"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 >
 <!-- Actions -->
 <actiondef id="put_on">
 <meta>
 <name>Put on</name>
 <description>Puts the object on a surface.</description>
 </meta>
 </actiondef>
 <actiondef id="boil">
 <meta>
 <name>Boil</name>
 <description>Boils an object.</description>
 </meta>
 <paramdef name="time" type="int"/>
 </actiondef>
 <actiondef id="fry">
 <meta>
 <name>Fry</name>
 <description>Fries an object.</description>
 </meta>
 <paramdef name="time" type="int"/>
 </actiondef>
 <actiondef id="destroy">
 <meta>
 <name>Destroy</name>
 <description>Removes the object from the scene</description>
 </meta>
 </actiondef>
 <!-- Objects -->
 <objectdef id="egg">
 <meta>
 <name>Egg</name>
 <description>Chicken egg</description>
 </meta>
 <propertydef name="temperature" type="int">0</propertydef>
 <propertydef name="heat_temp" type="int">0</propertydef>
 <state name="raw">
 <meta>
 <name>Decoration</name>
 </meta>
 <visual style="basic">
 <param name="model">egg_shell</param>
 </visual>
 <action name="click"/>
 </state>
 <style name="basic">
 <name>Basic</name>
 <description>Basic</description>
 </style>
 </objectdef>
 <!-- Scenes -->
 <scenedef id="kitchen">
 <meta>
 <name>Kitchen</name>
 </meta>
 <instance name="egg.01" definition="egg" state="raw"/>
 <instance name="egg.02" definition="egg" state="shell"/>
 <instance name="egg.03" definition="egg" state="fried"/>
 </scenedef>
</world>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 22
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

3.4- Scenario Configuration Descriptor

After the creation of the world the Scenario Designer should create a scenario configuration.
They will use the Scenario Editor to place objects in the different scenes and change the state
and properties of them or some of the objects that appear by default on each scene.

The next example file shows a scenario configuration with an egg shell (on the marble) and an
egg raw (on the pan). Also changes some objects: the default state of the kitchen door to make
it appear opened by default and the temperature to display in the thermometer.

<?xml version="1.0" encoding="utf-8"?>
<scenario
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="sceneario1"
 world="d1.3v01"
 version="0.1">
 <meta>
 <name>Kitchen defaults collocation</name>
 </meta>
 <sceneconfig scene="scene1">
 <collocation action="put" name="egg.01" definition="egg" state="shell"
parent="marble"/>
 <collocation action="put" name="egg.02" definition="egg" state="raw"
parent="pan">
 <property name="coocked">20</property>
 </collocation>
 <configure instance="kitchendoor" state="opened"/>
 <configure instance="thermomether.01">
 <property name="temperature">22</property>
 </configure>
 </sceneconfig>

</scenario>

3.5- Task Descriptor

The task editor is the tool used by the trainer to design the reference task for the trainee and
define the different roles of the characters.

The next example will show the task descriptor file for the task of the Figure 11: Example of a
task structure:

<?xml version="1.0" encoding="utf-8"?>
<task
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="example1">
 <meta>
 <name>A demo task</name>
 </meta>
 <introduction>
 <track>
 <sequence>
 <action>
 <subject>system</subject>
 <verb>show</verb>
 <directobject>message #1</directobject>
 </action>
 <action>
 <subject>patient</subject>
 <verb>navigate</verb>
 <directobject>treadmill</directobject>
 </action>
 <action>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 23
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 <subject>patient</subject>
 <verb>get</verb>
 <directobject>treadmill</directobject>
 </action>
 </sequence>
 </track>
 </introduction>
 <development>
 <track>
 <repeat>
 <invariant>
 <equals>
 <currentstate>treadmill</currentstate>
 <state from="treadmill">on</state>
 </equals>
 </invariant>
 <action>
 <subject>patient</subject>
 <verb>run</verb>
 </action>
 </repeat>
 </track>
 <track>
 <sequence>
 <action>
 <subject>trainee</subject>
 <verb>turn on</verb>
 <directobject>treadmill</directobject>
 <place>pan</place>
 </action>
 <parallel requested="1">
 <condition>
 <expression>
 <gt>
 <propertyfrom name="heart_rate">patient</propertyfrom>
 <value type="int">100</value>
 </gt>
 </expression>
 <sequence>
 <action>
 <subject>trainee</subject>
 <verb>stop</verb>
 <directobject>treadmill</directobject>
 </action>
 <action>
 <subject>trainee</subject>
 <verb>goodbye</verb>
 <indirectobject>patient</indirectobject>
 </action>
 </sequence>
 </condition>
 <condition>
 <expression>
 <propertyfrom name="treadmill">stopped</propertyfrom>
 </expression>
 <action>
 <subject>trainee</subject>
 <verb>goodbye</verb>
 <indirectobject>patient</indirectobject>
 </action>
 </condition>
 </parallel>
 </sequence>
 </track>
 </development>
 <conclusion>
 <track>
 <action>
 <subject>system</subject>
 <verb>show</verb>
 <directobject>message #2</directobject>
 </action>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 24
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 </track>
 </conclusion>
 <valid>scenario1</valid>

</task>

3.6- Training Program Descriptor

The trainer creates customized training programs on the basis of the existing tasks.

The next example is a training program in which two difficulty levels are defined (slow,
feedback). The first task is the demo task with feedback and then the trainee will do four times
the demo task with different configurations and in difficulty mode slow.

<?xml version="1.0" encoding="utf-8"?>
<trainingprogram
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 id="example1">
 <meta>
 <name>Training program 1</name>
 </meta>
 <level id="slow">
 <param name="timemultiplier">4</param>
 </level>
 <level id="feedback">
 <param name="objecthighlight">true</param>
 </level>
 <track>
 <sequence>
 <taskblock level="feedback" task="demotask1">
 <configuration>sceneconfig0</configuration>
 </taskblock>
 <repeat>
 <times>4</times>
 <taskblock level="slow" task="demotask1">
 <configuration>sceneconfig1</configuration>
 <configuration>sceneconfig2</configuration>
 <configuration>sceneconfig3</configuration>
 </taskblock>
 </repeat>
 </sequence>
 </track>

 </trainingprogram>

3.7- XML Schemas

The previous examples follow the specification defined using XML Schemas. The current
definition is represented using 5 different files. The basic elements, the world, the scenario
configuration, the task and the training program.

3.7.1- Base Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://movibio.lsi.upc.edu/seniorludens"
 elementFormDefault="qualified"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:mstns="http://movibio.lsi.upc.edu/seniorludens/base.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
 <xs:simpleType name="type">
 <xs:restriction base="xs:string">
 <xs:enumeration value="string"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="int"/>
 <xs:enumeration value="vector"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 25
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 <xs:enumeration value="bool"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="function">
 <xs:restriction base="xs:string">
 <xs:enumeration value="directobject"/>
 <xs:enumeration value="place"/>
 <xs:enumeration value="indirectobject"/>
 <xs:enumeration value="subject"/>
 <xs:enumeration value="instrument"/>
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="metadata">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="description" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="extmetadata">
 <xs:complexContent>
 <xs:extension base="metadata">
 <xs:sequence>
 <xs:element name="copyright" type="xs:string" minOccurs="0"/>
 <xs:element name="publishdate" type="xs:date" minOccurs="0"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:complexType name="param">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" use="required" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="property">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" use="required" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="instance">
 <xs:sequence>
 <xs:element name="property" type="property" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute type="xs:ID" name="name"/>
 <xs:attribute type="xs:IDREF" name="definition"/>
 <xs:attribute type="xs:string" name="state"/>
 <xs:attribute type="xs:IDREF" name="parent"/>
 </xs:complexType>

 <xs:group name="expressionelements">
 <xs:choice>
 <xs:element name="value" type="value"/>
 <xs:element name="propertyfrom" type="property"/>
 <xs:element name="gt" type="pair"/>
 <xs:element name="equals" type="pair"/>
 <xs:element name="currentstate" type="xs:string"/>
 <xs:element name="state" type="from"/>
 </xs:choice>
 </xs:group>

 <xs:complexType name="expression">
 <xs:group ref="expressionelements" maxOccurs="1"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 26
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 </xs:complexType>

 <xs:complexType name="value">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="type" type="type" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="from">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="from" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>

 <xs:complexType name="pair">
 <xs:group ref="expressionelements" maxOccurs="2"/>
 </xs:complexType>

 <xs:element name="project">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="meta" type="extmetadata"/>
 <xs:element name="id" type="xs:ID"/>
 <xs:element name="version" type="xs:float"/>
 <xs:element name="key" type="xs:string"/>
 <xs:element name="secret" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

3.7.2- World Schema
<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://movibio.lsi.upc.edu/seniorludens"
 elementFormDefault="qualified"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:mstns="http://movibio.lsi.upc.edu/seniorludens/world.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="0.1"
>
 <xs:include schemaLocation="base.xsd"/>

 <xs:complexType name="paramdef">
 <xs:attribute name="name" use="required"/>
 <xs:attribute name="type" default="string" type="xs:string">
 </xs:attribute>
 </xs:complexType>

 <xs:complexType name="propertydef">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" use="required"/>
 <xs:attribute name="type" default="string" type="type"/>
 </xs:extension >
 </xs:simpleContent>
 </xs:complexType>

<xs:complexType name="actiondef">
 <xs:sequence>
 <xs:element name="meta" type="extmetadata"/>
 <xs:element name="paramdef" type="paramdef" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:ID"/>
 <xs:attribute name="type" type="xs:string" default="sv"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 27
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 </xs:complexType>

<xs:complexType name="state">
 <xs:sequence>
 <xs:element name="meta" type="metadata"/>
 <xs:element name="visual" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="param" type="param" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="style" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="action" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="param" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="function" type="function"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
</xs:complexType>

<xs:complexType name="objectdef">
 <xs:sequence>
 <xs:element name="meta" type="extmetadata"/>
 <xs:element name="propertydef" type="propertydef" maxOccurs="unbounded"
minOccurs="0"/>
 <xs:element name="state" maxOccurs="unbounded" type="state"/>
 <xs:element name="partfrom" type="xs:IDREF" minOccurs="0"/>
 <xs:element name="style" maxOccurs="unbounded">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="metadata">
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="default" type="xs:boolean" default="false"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:ID"/>
</xs:complexType>

<xs:complexType name="scenedef">
 <xs:sequence>
 <xs:element name="meta" type="extmetadata"/>
 <xs:element name="instance" type="instance" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" use="required" type="xs:ID"/>
</xs:complexType>

 <xs:element name="world">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="actiondef" type="actiondef" maxOccurs="unbounded"/>
 <xs:element name="objectdef" type="objectdef" maxOccurs="unbounded"/>
 <xs:element name="scenedef" type="scenedef" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="version" type="xs:string" use="required"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 28
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 <xs:attribute name="app" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

3.7.3- Scenario Configuration Schema
<?xml version="1.0" encoding="utf-8"?>
<xs:schema
 targetNamespace="http://movibio.lsi.upc.edu/seniorludens"
 elementFormDefault="qualified"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:mstns="http://movibio.lsi.upc.edu/seniorludens/scenario.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
<xs:include schemaLocation="base.xsd"/>

 <xs:complexType name="collocation">
 <xs:complexContent>
 <xs:extension base="instance">
 <xs:sequence>
 <xs:element type="param" name="param" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="action" type="xs:string"/>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

 <xs:element name="scenario">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="meta" type="metadata"/>
 <xs:element name="sceneconfig">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="collocation" type="collocation" maxOccurs="unbounded"/>
 <xs:element name="configure" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="property" name="property" maxOccurs="unbounded"
minOccurs="0"/>
 </xs:sequence>
 <xs:attribute use="required" name="instance" type="xs:IDREF"/>
 <xs:attribute name="state" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="scene" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 <xs:attribute name="version" type="xs:string" use="required"/>
 <xs:attribute name="world" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

3.7.4- Task Schema
<?xml version="1.0" encoding="utf-8"?>
<xs:schema
 targetNamespace="http://movibio.lsi.upc.edu/seniorludens"
 elementFormDefault="qualified"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:mstns="http://movibio.lsi.upc.edu/seniorludens/task.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
 <xs:include schemaLocation="base.xsd"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 29
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 <xs:complexType name="message">
 <xs:sequence>
 <xs:element name="text"/>
 <xs:element name="audio" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:ID" use="required"/>
 </xs:complexType>

 <xs:complexType name="action">
 <xs:sequence>
 <xs:element name="subject" type="xs:string"/>
 <xs:element name="verb" type="xs:string"/>
 <xs:element name="directobject" type="xs:string" minOccurs="0"/>
 <xs:element name="indirectobject" type="xs:string" minOccurs="0"/>
 <xs:element name="instrument" type="xs:string" minOccurs="0"/>
 <xs:element name="place" type="xs:string" minOccurs="0"/>
 <xs:element name="time" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="condition">
 <xs:sequence>
 <xs:element name="expression" type="expression"/>
 <xs:choice>
 <xs:element name="sequence" type="sequence"/>
 <xs:element name="parallel" type="parallel"/>
 <xs:element name="action" type="action"/>
 <xs:element name="repeat" type="repeat"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:group name="blocks">
 <xs:choice>
 <xs:element name="sequence" type="parallel"/>
 <xs:element name="parallel" type="parallel"/>
 <xs:element name="condition" type="condition"/>
 <xs:element name="action" type="action"/>
 <xs:element name="repeat" type="repeat"/>
 </xs:choice>
 </xs:group>

 <xs:complexType name="sequence">
 <xs:group ref="blocks" minOccurs="1" maxOccurs="unbounded"/>
 </xs:complexType>

 <xs:complexType name="repeat">
 <xs:sequence>
 <xs:choice>
 <xs:element name="invariant" type="expression"/>
 <xs:element name="times" type="xs:int"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="sequence" type="sequence" maxOccurs="unbounded"/>
 <xs:element name="parallel" type="parallel" maxOccurs="unbounded"/>
 <xs:element name="condition" type="condition"/>
 <xs:element name="action" type="action" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="parallel">
 <xs:group ref="blocks" minOccurs="2" maxOccurs="unbounded"/>
 <xs:attribute name="requested" use="required" type="xs:int"/>
 </xs:complexType>

 <xs:complexType name="track">
 <xs:choice>
 <xs:element name="sequence" type="sequence"/>
 <xs:element name="parallel" type="parallel"/>
 <xs:element name="condition" type="condition"/>
 <xs:element name="action" type="action"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 30
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 <xs:element name="repeat" type="repeat"/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="stage">
 <xs:sequence>
 <xs:element name="track" type="track" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:element name="task">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="meta" type="metadata"/>
 <xs:element name="message" type="message" maxOccurs="unbounded"/>
 <xs:element name="introduction" type="stage" minOccurs="0"/>
 <xs:element name="development" type="stage"/>
 <xs:element name="conclusion" type="stage" minOccurs="0"/>
 <xs:element name="valid" type="xs:IDREF" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

3.7.5- Training Program Schema
<?xml version="1.0" encoding="utf-8"?>
<xs:schema
 targetNamespace="http://movibio.lsi.upc.edu/seniorludens"
 elementFormDefault="qualified"
 xmlns="http://movibio.lsi.upc.edu/seniorludens"
 xmlns:mstns="http://movibio.lsi.upc.edu/seniorludens/trainingprogram.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
>
 <xs:include schemaLocation="base.xsd"/>

 <xs:complexType name="taskblock">
 <xs:sequence>
 <xs:element name="configuration" type="xs:IDREF" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="level" type="xs:IDREF" use="required"/>
 <xs:attribute name="task" type="xs:IDREF" use="required"/>
 </xs:complexType>

 <xs:complexType name="tr_condition">
 <xs:sequence>
 <xs:element name="expression" type="expression"/>
 <xs:choice>
 <xs:element name="sequence" type="tr_sequence"/>
 <xs:element name="parallel" type="tr_parallel"/>
 <xs:element name="taskblock" type="taskblock"/>
 <xs:element name="repeat" type="tr_repeat"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:group name="trainingblocks">
 <xs:choice>
 <xs:element name="sequence" type="tr_sequence"/>
 <xs:element name="parallel" type="tr_parallel"/>
 <xs:element name="condition" type="tr_condition"/>
 <xs:element name="taskblock" type="taskblock"/>
 <xs:element name="repeat" type="tr_repeat"/>
 </xs:choice>
 </xs:group>

 <xs:complexType name="tr_sequence">
 <xs:group ref="trainingblocks" minOccurs="1" maxOccurs="unbounded"/>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 31
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

 </xs:complexType>

 <xs:complexType name="tr_repeat">
 <xs:sequence>
 <xs:choice>
 <xs:element name="invariant" type="expression"/>
 <xs:element name="times" type="xs:int"/>
 </xs:choice>
 <xs:choice>
 <xs:element name="sequence" type="tr_sequence" maxOccurs="unbounded"/>
 <xs:element name="parallel" type="tr_parallel" maxOccurs="unbounded"/>
 <xs:element name="taskblock" type="taskblock" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="tr_parallel">
 <xs:group ref="trainingblocks" minOccurs="2" maxOccurs="unbounded"/>
 </xs:complexType>

 <xs:complexType name="trainingtrack">
 <xs:group ref="trainingblocks" />
 </xs:complexType>

 <xs:element name="trainingprogram">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="meta" type="metadata"/>
 <xs:element name="level" maxOccurs="unbounded" minOccurs="1">
 <xs:complexType>
 <xs:all>
 <xs:element name="param" type="param"/>
 </xs:all>
 <xs:attribute name="id" type="xs:ID" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="track" type="trainingtrack"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>

</xs:schema>

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 32
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Figures and tables

Figure 1: Senior Ludens components ... 4

Figure 2: Structure of SeniorLudens Game Kit ... 5

Figure 3: World, scenario and configuration ... 7

Figure 4: World definition and Scene Instance ... 8

Figure 5: Object and Visual Object definition and instances ... 8

Figure 6: An example of an object's state diagram ... 9

Figure 7: Simplified class diagram of the Object Definition Class, the Object Instance and the
Visual Object. .. 11

Figure 8: Complete state diagram of the object definition and three possible state diagrams of
object instances ... 12

Figure 9: Differences between Actions Definition, Visual Action and User Intended Actions and
how user input is processed during the game execution to yield to actions 13

Figure 11: Example of a task structure ... 18

Figure 12: Simplified class diagram of the training program ... 19

Figure 13 - File Descriptors overview .. 20

Table 1: An example of the relationship between objects and visual objects 10

AAL-2013-6-039

SeniorLudens

Date

08/2014

D1.3 - Scenario, Task and Game Files descriptors

 Page 33
WP1 - System functional and technical requirements

WP1 - System functional and technical requirements

Acronyms

Acronym Explanation

SLGK SeniorLudens Game Kit

XML eXtensible Markup Language

