

AMBIENT ASSISTED LIVING JOINT PROGRAME

AAL-2013-6-039

SeniorLudens

Serious Games development platform for older workforce
training and intergenerational knowledge transference

D2.5

Serious Games development engine
(M19)

Workpackage
WP2 – Serious games development engine design and
implementation

Lead beneficiary INDRA

Editor(s)

Dani Tost- CREB-UPC

Ariel von Barnekow – CREB-UPC

Núria Bonet Codina – CREB-UPC

Salvador Aguilar – INDRA

Gary Honegger - YR

Contributor(s) Stefano Puricelli - CBIM

Reviewer(s)
Marije Blok – KBO

Salvador Aguilar - INDRA

Release Date 10/2015

Version V1.0

Circulation
Project Partners, AAL Control Management Unit, and National
Funding Agencies.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 2

WP2 – Serious games development engine design and implementation

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 3

WP2 – Serious games development engine design and implementation

Table of Contents

ABSTRACT ... 5

1- SENIORLUDENS GAME KIT DOCUMENTATION .. 6

1.1- INSTALLATION .. 6
1.1.1- Install the Gamekit for Unity .. 6

1.1.1.1- Requirements ... 6
1.1.1.2- Obtain the Game kit .. 7
1.1.1.3- Obtain the Game kit SDK .. 7

1.2- CREATE A NEW WORLD .. 8
1.2.1- Before you start ... 8
1.2.2- Instructions ... 8

1.2.2.1- Create a new SeniorLudens Unity Project at CREB’s VCS .. 8
1.2.2.2- Configure Unity .. 10
1.2.2.3- SeniorLudens project files ... 11
1.2.2.4- Create a new warehouse .. 13
1.2.2.5- Define the world ... 14
1.2.2.6- Create a scene .. 14
1.2.2.7- Create the user’s avatar .. 17

1.3- MODIFY A WORLD .. 20
1.3.1- Before you start ... 20

1.3.1.1- Who is able to modify a world and why?... 20
1.3.1.2- Learn about the existing resources .. 20

1.3.2- Add an object to a world .. 20
1.3.3- Modify existing objects .. 22

1.3.3.1- Create a new visual style for an object ... 22
1.3.3.2- Create a new state of an object .. 23
1.3.3.3- Add an existing behaviour to an object... 24

1.3.4- Create a new action for an object ... 25
1.3.4.1- How to create an identifier for an action .. 25
1.3.4.2- Examples ... 26

1.3.5- Remove objects from your world ... 28
1.3.6- Create a new object ... 29

1.3.6.1- Create a different object similar to an existing one .. 29
1.3.7- Create a new kind of object ... 29
1.3.8- Create a component ... 30

1.3.8.1- Use an object as component .. 31
1.3.8.2- Create a form ... 31
1.3.8.3- Add a form to your scene .. 33

1.3.9- Modify a scene .. 34
1.3.10- Add a new scene to your world ... 34
1.3.11- Build a game .. 34

1.3.11.1- Test a game .. 35
1.3.11.2- Upload a game ... 35

1.4- MIGRATE A UNITY SCENARIO ... 35

2- SCENARIO EDITOR ... 36

2.1- INTRODUCTION .. 36
2.2- INSTALLATION ... 36
2.3- ACCESS .. 36
2.4- FEATURES .. 38

2.4.1.1- Show and hide the Menu System ... 38
2.4.1.2- Show and filter available items ... 39
2.4.1.3- Select an item .. 41
2.4.1.4- Drop an item ... 42
2.4.1.5- Rotate an item .. 43
2.4.1.6- Delete an item .. 45

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 4

WP2 – Serious games development engine design and implementation

2.4.1.7- Save the configuration ... 46

3- TASK EDITOR .. 47

3.1.1- Reference site .. 47
3.1.2- Introduction .. 47
3.1.3- Access .. 47
3.1.4- Features ... 50

3.1.4.1- How include new blocks ... 50
3.1.4.2- Workspace ... 51
3.1.4.3- Modify within the block ... 51
3.1.4.4- Load existing task descriptor .. 52
3.1.4.5- Create new task descriptor ... 53
3.1.4.6- Put action modules in parallel .. 54

4- TRAINING PLAN EDITOR ... 55

4.1.1- Introduction .. 55
4.1.2- Access .. 55
4.1.3- Features ... 57

4.1.3.1- Main View ... 58
4.1.3.2- Source elements .. 58
4.1.3.3- Training Plan Main Canvas .. 60
4.1.3.4- Detail view .. 61

FIGURES AND TABLES .. 63

ACRONYMS .. 65

AAL-2013-6-039

SeniorLudens

Abstract

This document aims for detailing the installation of SeniorLudens Game Engine. It can be also
considered as a user manual attached to the software pilot developed.

The Game Engine is the system in charge of automating the Serious Games creation process.
Based on the different element which comprises the SL Game Engine, this deliverable is
composed of four parts: in the first part it describes the user manual of the Game Kit (SLGK), in
the second part the Scenario Editor, the third part the Task Editor and the last one is reserved
for the Training Program Editor.

All the information described in the document is available in an html wiki to support the
organizations and game designers during the game creation process.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 6

WP2 – Serious games development engine design and implementation

1- SeniorLudens Game Kit Documentation

SeniorLudens is a Serious Game Development Platform for older workforce training and inter-
generational knowledge transfer, funded by the EU program AAL-2013-6-039. The platform is
formed by multiple components and one of them is the GameKit, this documentation is about it.

To know more about the platform and the role of the Gamekit in the platform, please read
SL_Gamekit.

This part introduces the SeniorLudens GameKit and then focuses on step- by-step
instructions for the creation of games.

1.1- Installation

SeniorLudens GameKit currently only supports one game engine: Unity 3D. This section ex
plains how to install the game kit and its dependencies in a Unity project.

Note: Please take note that, in the current stage of SeniorLudens development, the SeniorLu-
dens GameKit and warehouses are installed in intermediary servers. This will be modified in the
future since everything will be installed in the final SL server. Therefore, these instructions will
need to be updated when the SeniorLudens GameKit will be uploaded to the SeniorLudens
platform.

1.1.1- Install the Gamekit for Unity

1.1.1.1- Requirements

To use the game kit, you must install the following programs:

 Unity 3d 5.2.2f1

 Git

 Python >= 3.3

 Blender

Why Unity 5.2.2f1?

The reference version of Unity 3D for developing games with the SeniorLudens Gamekit is
2.2f1, however any minor version from the 5.2 branch should work and we recommend to use
the latest version from this branch before opening to the public a new game.

 Download links Windows Mac

 Release notes 5.2.2

 API http://docs.unity3d.com/520/Documentation/ScriptReference/index.html

 API History http://docs.unity3d.com/ScriptReference/40_history.html#5-2-1

The development of the game kit started with version 4.5.0 (27 May 2014), since the
announcement of the new UI on version 4.6 we were expecting it. We tried it just after the
release, on April, and we found some issues. We decided to wait few minor versions, finally we
migrated from 4.5.5 to 4.6.3, few weeks later unity announced the public release of a new major
version 5, at this point we decided to not upgrade to 5 and stay with 4.6 until autumn, we did a

http://seniorludens.eu/
http://www.aal-europe.eu/projects/senior-ludens/
http://unity3d.com/
http://unity3d.com/get-unity/download/archive
https://git-scm.com/
https://www.python.org/downloads/
https://blender.org/
http://unity3d.com/get-unity/download?thank-you=update&download_nid=15572&os=Win
http://unity3d.com/get-unity/download?thank-you=update&download_nid=15572&os=Mac
http://unity3d.com/unity/whats-new/unity-4.6.4
http://docs.unity3d.com/520/Documentation/ScriptReference/index.html

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 7

WP2 – Serious games development engine design and implementation

minor upgrade to 4.6.4 and due to the fast release cycle of the following minor versions we
decided to stick with this version until we move to Unity 5.

On late September 2015 we moved to Unity 5.1 and on October to the last release, 5.2.2f1, and
we will try to freeze this version until we release our second prototype.

1.1.1.2- Obtain the Game kit

You can obtain the game kit for Unity cloning the repository SeniorLudens Uni-
tyGameKit:git@movibio.lsi.upc.edu:seniorludens/unity.git inside your Assets folder, with the
following commands:

Clone the gamekit

git clone git@movibio.lsi.upc.edu:seniorludens/unity.git SeniorLudensGameKit

Init gamekit submodules

cd SeniorLudensGameKit

git submodule update –init

Note: If your project uses git as source management control, you will prefer to add the gamekit
as a submodule 3 instead of cloning the repository:

git submodule add git@movibio.lsi.upc.edu:seniorludens/unity.git Assets/SeniorLuden

Init gamekit submodules

cd SeniorLudens

git submodule update --init

1.1.1.3- Obtain the Game kit SDK

The SeniorLudens Gamekit SDK extends the Unity Editor to improve the development
experience with the SeniorLudens GameKit, its features are explained in the section
gamekitunity3d.

Note: The following code expects to have Python installed, we recommend using Python 3.4
(amd64).

To install it you have to clone the SeniorLudens UnityGamekitSDK:
git@movibio.lsi.upc.edu:seniorludens/unitysdk.git to your Assets/Editor folder, if you are inside
your assets folder you can do it with:

Warning: Once the game kit becomes more mature, we will provide it as an asset importable to
Unity. By the moment the unique way is to obtain it directly from its repository.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 8

WP2 – Serious games development engine design and implementation

Clone the gamekit

git clone git@movibio.lsi.upc.edu:seniorludens/unitysdk.git Editor/SeniorLudensGame
pip install -r Editor/SeniorLudensGameKit/requirements.txt

Or if you prefer to use a submodule:

Clone the gamekit

git submodule add git@movibio.lsi.upc.edu:seniorludens/unitysdk.git Assets/Editor/S pip
install -r Assets/Editor/SeniorLudensGameKit/requirements.txt

Finally you have to install manually lxml 4, if you are using MS Windows, we recommend you to
use an unofficial build of lxml:

pip install "http://www.lfd.uci.edu/~gohlke/pythonlibs/3i673h27/lxml-3.4.4-cp34-non

1.2- Create a new world

1.2.1- Before you start

Every time a new virtual environment is needed, a new SeniorLudens world (see SL_worlds)
must be built. These instructions explain how to do it. If you already have a world and you want
to add it some objects or actions, go to “Modify a world” section. If you have a Unity3D scenario
that you want to use in SeniorLudens, follow to “Migrate a Unity Scenario” section. In any case,
before you start, read Section “Who is able to modify a world and why?” to make sure that you
are aware of the roles and permissions in the SeniorLudens platform.

Creating a world means not only creating a 3D scenario, but also organizing it in the very
specific way that SeniorLudens GameKit needs in order provide the required functionalities. In
particular, you will need to create a new Unity3D project, do some settings, create a warehouse
(see warehouses), scenes 1 and add the basic structural objects. After that, the world core will
be created and you will be able to improve it adding objects and behaviours following the
instructions of Modify a world.

Please, follow the instructions sequentially; otherwise you may end in a deadlock.

1.2.2- Instructions

1.2.2.1- Create a new SeniorLudens Unity Project at CREB’s VCS

In this document, you will learn how create a new repository at CREB’s VCS, to pull the needed
files from the git repository and how to create and configure an empty Unity 3D project for your
game.

1. Open http://movibio.lsi.upc.edu/gitlab/groups/seniorludens and authenticate yourself.
2. In the right menu, select New Project (green button), if you don’t see the button

probably you don’t have permission to create new projects, please contact with
someone from CREB.

3. Follow the step-to-step instructions: specify the path of the project and a short
description. The namespace is seniorludens (default) and the scope is private. Confirm.

4. Open a new git window or console and follow the instructions step-by-step: general
setting the first time and create a repository.

5. Create a directory called src the project directory, this will be the folder the Unity
Project.

6. Open Unity –> File –> New Project and indicate the src directory.
7. Automatically, various directory will be created inside src, one of them called Assets will

contain all the re- sources of the project.

http://lxml.de/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml
http://www.lfd.uci.edu/~gohlke/pythonlibs/3i673h27/lxml-3.4.4-cp34-non

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 9

WP2 – Serious games development engine design and implementation

8. Install the SeniorLudens Gamekit for Unity3D as it’s explained at Installation.
9. In order to avoid uploading unneeded files, add the following contents to the .gitignore:

If you prefer you can download it from: SeniorLudens .gitignore

10. Modify the editor project settings Unity: Edit -> Project Settings -> Editor to use text

serialization and visible metafiles, as show in the next image:

##########################

SeniorLudens .gitignore

v1.0

###########################

Unity ### [Ll]ibrary/ [Tt]emp/ [Oo]bj/

Autogenerated VS/MD solution and project files

.csproj

.unityproj

.sln

.suo

.user

.userprefs

.pidb

.booproj

#Unity3D Generated File On Crash Reports sysinfo.txt

Other generated files bin/

obj/

Blender####

*.blend?

*.blend?.meta

Distribution files ####

dist/

Docs/

Testing ###

coverage/

TestResult.xml

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 10

WP2 – Serious games development engine design and implementation

Figure 1 Enable Visible Metafiles

11. Do not close your Unity3D project, just proceed to the next step to create the basic
SeniorLudens Project Files . Remember that from now on, you should periodically, add
your project files, make a commit and push it to your repository:

• git add (whatever needed, check with git status)

• git commit

• git push

1.2.2.2- Configure Unity

Unity 3D lets you name and configure the events of the mouse, keyboard or joystick as Input
Axes, to use SeniorLudens Gamekit for Unity3D you have to rename and configure two of the
default axes.

To configure the axes you have to go to Edit –> Project Settings –> Input and then Inspector –>
Axes, and then:

1. Rename axis Fire1 to PrimaryAction.

2. Exchange the values of parameter Positive Button and Alt Positive Button (optional).

3. Rename axis Fire2 to SecondaryAction.

4. Exchange the values of parameter Positive Button and Alt Positive Button (optional).
Your configuration should look like:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 11

WP2 – Serious games development engine design and implementation

Figure 2 Set default actions

1.2.2.3- SeniorLudens project files

A SeniorLudens project needs the following files:

• myprojectConfiguration.cs that contains the definition of the actions that are

specific actions of your world.

• myprojectWorld.xml that defines all the objects of your world

• scenarioConfiguration.xml that describes the initial content of all

the scenes of your world. 1

• For each task:

mytask.xml that describes the contents of a task. 1

1. Create the C# file MyProjectConfiguration.cs. By now, just copy the file

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 12

WP2 – Serious games development engine design and implementation

enclosed below. Do not forget to substitute MyProject by the name of

your project.

using SeniorLudens.Unity;

public class MyProjectConfiguration :

SeniorLudensUnityAppConfiguration {

public override void Configure

(SeniorLudens.Core.Application app)

{

// Configure your application here adding

your custom behaviou

}

}

2. Create the xml file MyProjectWorld.xml as shown below. As you can

see it is almost empty. It only includes a default object called room.

With this you have enough right now, so just copy it as it is. Later, you

will add the definition of all the objects of your world after this

definition.

3. Create the xml file scenarioConfiguration1.xml. By now, this file is also

almost empty. Within the tags <positions> </positions> you’ll put the

initial positions of the instances of the objects existing at the beginning

of the game in each scene of the world.

4. Create a first task FirstDemoTask.xml that simply closes the game after a lapse of time.
You can copy the one below. Try to understand it. It has only the introduction step and
one track composed of a sequence of three blocks. The first block is a conditional block
that requires waiting 60 seconds. The second block is a system action consisting of
showing the message ‘Bye!’. Finally, the third block is again a condition of a waiting
time of 20 seconds.

<?xml version="1.0" encoding="UTF-8" ?>

<scenarioconfig>

</scenarioconfig>

<?xml version="1.0" encoding="UTF-8" ?>

<world>

<objectdef id="room">

<states default="decoration">

<state name="decoration"></state>

</states>

</objectdef>

</world>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 13

WP2 – Serious games development engine design and implementation

5. In the next step you will create a warehouse for your world.

1.2.2.4- Create a new warehouse

In order to create a new warehouse, you just need to create the directory warehouseMyWorld

in Assets. This warehouse will contain the objects that are specific to your world, have been

designed for it and are not shared by any other world. In your world, you will use the objects of

this warehouse and those of the SeniorLudens warehouse that are common to all

SeniorLudens projects. See warehouses to know more about the structure of the warehouses in

SeniorLudens.

<?xml version="1.0" encoding="UTF-8" ?>

<task>

<meta>

<name>Test task</name>

</meta>

<introduction>

<track>

<sequence>

<condition>

<expression>

<wait>60</wait>

</expression>

</condition>

<action>

<subject>system</subject><verb>setTextPro

perty</verb><directobject>message</directobject

>

<param name="text">Bye!</param>

</action>

<condition>

<expression>

<wait>2</wait>

</expressi

on>

</condition>

</sequence>

</track>

</introduction>

</task>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 14

WP2 – Serious games development engine design and implementation

1.2.2.5- Define the world

You’ve just done the Basic setting for the creation of a new world of your world. Unity 3D

provides a default scene. Use it to create a new component that represents your world.

6. In the Assets directory create a new directory called Scenes. This is

where you will store your scenes.

• Save the default scene: File -> Save Scene (choose a convenient name and

indicate the newly created direc- tory Scenes)

7. Create an empty object. Call it after your world’s name (herein

MyWorld). GameObject -> Create Empty (name it as MyWorld)

8. With the empty object selected, add the component MyWorld Configuration to it. It is the

script that you’ve created in Step SeniorLudens project files :

In the Inspector panel -> Add Component -> MyWorld

9. Configure MyWorld Configuration in the corresponding fields of the components panel.

The Game level is the name of the scene. The world file is the xml file of definition of

your world (NameWorld.xml), the scenariofile ScenarioConfiguration1.xml and the task

FirstDemoTask.xml. See the image below for the world called Yalm.

Figure 3 Configure MyWorld Configuration

1. Create a prefab with the empty object by dragging it from the hierarchy panel to the

assets directory in the Project panel at the lower part of the screen. A prefab is a

Unity3D template of the objects and its components.

2. You are now ready to work on this scene add to it structural elements and objects. We

are now ready to create a scene.

1.2.2.6- Create a scene

Connect the scene with SeniorLudens GameKit

1. If you’ve just defined a new world (Define the world section) open it. You have already

created a new scene. Otherwise, create a new scene in your old world and save.

2. In Unity 3D create an empty object that will represent the scene. Name the empty after

the scene’s name:

GameObject → Create Empty → (name it as MySceneApp)

3. Assign the script SeniorLudens Scene to recently created object MySceneApp:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 15

WP2 – Serious games development engine design and implementation

Window → Inspector → Add Component → SeniorLudens →SeniorLudens

Scene

4. Fill the corresponding fields: the configuration script is MyWorlConfiguration.cs, the
Game Server URI is http://movibio.lsi.upc.edu/seniorludens/dev and the Develop-
ment Server http://localhost:5000. See the image below where the name of the project
is Yalm.

Figure 4 Complete Scene configuration

5. Ensure that the game level parameter of your world prefab is the scene’s name.

1.2.2.6.1- Create a Skybox

A skybox is a panoramic texture that represents the background of the scene: a sky or

something similar. To create it, just follow the instructions of Unity3D Skyboxes
1
.

Summarizing:

1. Open the render settings: Edit → Render Settings

2. In the Inspector window, on the default layout at the right side, press the

Skybox Material button and search the material (e.g.: sunny1 Skybox).

Note: You can design skyboxes of your own or use those provided in the

corresponding Unity3D package Assets → Import Package → Skyboxes)

1.2.2.6.2- Add lights

To start, add just a basic Unity3D light
2
, the available lights can be found on the menu under

GameObject → Light or with the keyboard Alt-g Alt-l

For example to add a directional light you will select on the menu GameObject → Light →
Directional Light ‘ or with the keyboard Alt-g Alt-l Alt-d.

1.2.2.6.3- Create your basic structure (ground and walls)

You can create them directly in Unity3D, or alternatively create them with a digital content

creation editor (e.g. Blender) and insert them in your project. In both cases, you must be

1
 http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html

2
 http://docs.unity3d.com/Manual/class-Light.html

http://movibio.lsi.upc.edu/seniorludens/dev
http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
http://docs.unity3d.com/Manual/class-Light.html
http://docs.unity3d.com/Manual/HOWTO-UseSkybox.html
http://docs.unity3d.com/Manual/class-Light.html

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 16

WP2 – Serious games development engine design and implementation

aware of the structure of the files and directory in SeniorLudens projects. Please read first

the warehouses Section. You will also need to create the definition files of the objects.

The ground and walls are not likely to be shared by any other project and thus, in general, they

will not be stored in the SeniorLudens warehouse. Thus, you will create them and store them

in your project’s warehouse in the corresponding directories as follows:

• In your project’s warehouse, create a directory called objects, and inside it create a

directory called structure. If your ground is an open-air landscape, create a directory

called landscapes. In these directories, create a directory for each of your objects (e.g.

in the structure directory create walls, roof and ground).

• Create the structure objects with Unity 3D ...

In the menu GameObject -> 3D Object –> select a plane, a terrain or whatever

needed. In the Inspector panel, modify dimensions, position and other attributes.

• ... or import them from Blender

– Read first the guidelines on how to create a Blender object to include it in a Senior-

Ludens project in Section blender_objects. This will spare you a lot of time!

– Save the .blend in the newly created directory.

– In Unity 3D, drag the object from the Project to Scene and modify its property in

Inspector panel.

After that, in both cases perform the following steps following the steps described in Section

Unity_objects:

• Add the VisualObject component

• Add the Collider component

• Mark Is Trigger

• In the Inspector panel mark the static flag

• Create an .xml file with the definition of the object.

• Create the prefab

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 17

WP2 – Serious games development engine design and implementation

1.2.2.6.4- Add the definitions of the structural objects in the file
ProjectWorld.xml

In the file YourProjectNameWorld.xml that you have created in the previous steps, add the
definitions of the structural objects of the scene. For example:

1.2.2.6.5- Register the scene

Just skip this step by now until SeniorLudens supports multiscenes.

1.2.2.6.6- Add objects

To add objects in your scene, follow Section Add an object to a world section.

1.2.2.7- Create the user’s avatar

SeniorLudens games are first-person perspective. This means that the environment is rendered

from the point of view of the player’s avatar. This avatar is a special SeniorLudens object

composed of a camera and a very simple bounding box body used to control collisions. The

avatar’s camera is used at each frame to render the scene.

6. Add the user’s avatar to the scene:

Look for the object avatar in the SeniorLudens warehouse. Pick it in the
Project panel and drag the avatar prefab to the Scene. In the Inpector panel,
adjust position and rotation.

7. Remove the object Main Camera. You don’t need it anymore, because you will use the

<?xml version="1.0" encoding="UTF-8" ?>

<world>

<objectdef id="ground">

<states default="decoration">

<state name="decoration">

<action name="navigate"

function="place"/>

</state>

</states>

</objectdef>

<objectdef id="wall">

<states default="decoration">

<state name="decoration">

<action name="navigate"

function="place"/>

</state>

</states>

</objectdef>

</world>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 18

WP2 – Serious games development engine design and implementation

avatar’s camera.

8. Check that you can observe the scene from the avatar’s perspective:

Press Play and move the mouse. You should be able to rotate the view direction.

You’ll probably get various error messages in the Console panel. Don’t care

about them, you’ll fix them in the next steps.

9. Add the definitions of the avatar to the project definition file myprojectWorld.xml (see

SeniorLudens project files). Since the avatar is a compound of objects, you must add

the definition of each of the parts that you want to be able to refer to in the game logics.

In general, it is enough to define the GUIcamera that composes the avatar’s main camera

and the avatar itself. Thus, add the following peace of definitions to the project definition

file.

10. Setup the navigation:

(a) Check that all the objects that won’t move during the game (e.g the ground and

the walls) are static.

With the object selected, check static in the Inspector panel (at top right).

(b) For all static objects, define if the avatar will be allowed to navigate

automatically towards it or not.

With the static object selected, in the Window submenu of the main

menu, select the Navigation option. In the Navigation panel, select

the Navigation layer. Choose Default if you want to allow

navigation towards the object and Not walkable otherwise. For

instance, with the object ground selected, choose: Navigation Layer

-> Default.

(c) At the bottom right of the Navigation tab, press the button Bake.

<objectdef id="GUICamera">

<states default="decoration">

<state name="decoration" model="GUICamera"/>

</states>

</objectdef>

<objectdef id="user">

<states default="motionless">

<action name="quit" function="subject"/>

</state>

<state name="motion">

<action name="stopNavigation"

function="subject"/>

</state>

<state name="staticCamera">

<action name="lockCamera" function="subject"/>

</state>

</states>

</objectdef>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 19

WP2 – Serious games development engine design and implementation

You’ll be able to see in blue the navigation mesh
3
.

(d) Adjust the mesh by tuning the parameters:

• Radius: the proximity margin to the obstacles. Be careful with this value:

if it is too large, you won’t be allowed to pass through narrow doors. A

good value according to SeniorLudens scenarios scale is 0.2

• Height: a good value is 1.8. If it is too high, the avatar won’t be able to

pass through doors.

11. Verify that the avatar navigates and recognizes the different scene’s objects.

Press Play and click on the object you want to go to. On the bottom

of the screen a message will indicate where you are navigating to.

1.2.2.7.1- Configure the avatar

Select the avatar and in the Inspector panel, in the Nav Mesh Agent component, you can

modify interesting features:

1. Speed: navigation speed [p.ex: 1]

2. Stopping Distance: Distance to the clicked object at which the avatar stops

Note: Apparently, the minimum Stopping Distance is 0.8. Below, the behaviour is as if it was 0.

1.2.2.7.2- Configure the avatar’s camera parameters

Select Main Camera in the avatar compound,. In the panel Inspector modify the component

Camera, for instance, the clipping planes and the type of projection.

3
 http://docs.unity3d.com/Manual/nav-InnerWorkings.html

Warning: Choose carefully the distances, because if they are too large, the objects may all fall

out of the scope of the avatar.

Warning: If it doesn’t work, check that the object you want to go to has a collider. In general a
Box Collider is enough. However, if the object is a closed space (a room, for instance) and the
avatar is inside, you need to put a box collider per wall or a Mesh collider. Check also that the
flag IsTrigger is on.

http://docs.unity3d.com/Manual/nav-InnerWorkings.html

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 20

WP2 – Serious games development engine design and implementation

1.3- Modify a world

1.3.1- Before you start

1.3.1.1- Who is able to modify a world and why?

Your organization is provided with a world composed of a set of objects and a set of scenes
(scenario). Using the Scenario Editor, you are able to create graphically configurations of the
scenes based on existing objects of the world. Using the Task Editor, you are able to define
tasks in a specific configuration of your world.

If you are missing objects or behaviours in your world, you will need to ask for them to the
SeniorLudens management board. They will create the objects, program the new behaviours
and include them in your world.

In this document, we explain how to modify a world adding new objects and new functionalities.
You will only be able to this task if you have access to the SeniorLudens Game Kit. You must
be familiar with Unity3D to do it. Skip this document if you are simply willing to modify a
configuration of the scenario and use the Scenario Editor instead.

If you need to create a new world from scratch continue reading this section and then jump to
Section Create a new world.

1.3.1.2- Learn about the existing resources

The objects available in your world come from two repositories:

 the SeniorLudens repository, available in all the SL projects.

 your own project repository.

These repositories are in the Assets directory: warehouseSL and warehouseProject. Take a
look inside and look the available resources. They are classified according to their category:
food, accessories, construction etc.

Note: May be you already have what you need!! See SeniorLudens Warehouses section to

know more about the structure of these repositories.

Whether you create new objects or modify them you need to know the concepts of
SeniorLudens object, Visual Object, Unity Objects and Prefab.

1.3.2- Add an object to a world

In this section you will learn how to add an existing object stored in a warehouse to your world. If
you want to create a new object from scratch, go to Create a new object section.

Adding an object to a world will allow users of the Scenario Editor to create instances of that
object for different scene configurations.

There are two ways of adding an object to a world: either you add directly an instance of the
object in a scene of the world, or you add the object to the world without creating any instance of
it. In the latter case the object will not belong to the initial configuration of the scene, but it will be
available in the Scenario Editor to create instances of it in other configurations. Keep in mind that
in the Scenario Editor, you will only be able to manage objects that are in the world.

The core of SeniorLudens Game Kit implements a lot of actions such as to pick, to drop and
to change state. However, some objects have very specific actions or autonomous behaviour
that are not included in the core. These objects have they own scripts. When adding them in a
world, you will need to add also their actions. Follow the instructions to do it.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 21

WP2 – Serious games development engine design and implementation

To add an instance of an object to the scene:

1. Drag the prefab from the warehouse.

To add a new object to a world without adding an instance of it in a scene, follow the steps:

1. Open the scene of your world in which you are working

2. Select the empty Unity object that represents a scene of your world (MainScene, e.g.)

3. In the left-side panel, add a new entry to the Warehouse drop-down submenu:

increase the number of objects drag the prefab of the new object to the new entry.

In both cases:

1. In the world definition xml file add the description of the new object
(see SeniorLudens project files subsection). The description is available in
the warehouse in the file definition.xml just open it and cut and paste in

MyWorld.xml.

Check if the object has update scripts to implement autonomous behaviours
not included in the core. If so, they should be in a folder called scripts, and
within it in a subfolder cs. They should be named after the object’s

name. This is the case, for instance of the objects extractor. Its update

script reproduces the sound of an extractor when it is on. The script is
called extractor.cs. Take a look at the scripts and check if they are

defined on the Visual Object or on the object. In the former case, the
prefab already includes the behaviour programmed in the script, so you

don’t have to do anything. This is the case of the thermometer has a
thermometer.cs script, but defined on the ThermometreVisual. In the latter

case, you should notify the existence of the behaviour to the world. For
that, open the script Configure of MyWorld class definition, and add the

sentence app.AddType(MyObjectTypeID, typeof(MyObjectType). This is

the case of the extractor. For instance:

2. Check if the object has action scripts to implement specific reactive

actions. If so, they should also be in the folder cs of the folder scripts.

They should be named after the action’s name. For instance the object

egg has the action break implemented in the script BreakAction. You

must notify the world of the existence of this action. Open the script

Configure of MyWorld class definition, and add the new Action

(app.AddAction(new MyActionName)). For instance:

public void Configure (SeniorLudens.Core.Application app) {

app.AddAction(new SeniorLudens.Warehouse.Egg.BreakAction());

}

public void Configure (SeniorLudens.Core.Application app) {

app.AddType("Extractor", typeof(Extractor));

}

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 22

WP2 – Serious games development engine design and implementation

1.3.3- Modify existing objects

You can modify existing objects of your world by adding to them new visual styles, new

states and new actions.

1.3.3.1- Create a new visual style for an object

Your world has a ball, looking as a football ball with black and white patches. You need a
different style, with red and blue patches. The first thing that you need to think about is if the
second ball is only a variation of the first one (a different visual style) or if it is actually a
different object. For instance rugby balls and football balls may be different objects, because
they may play a different role in a training game. If you need to create a different object proceed to
Section Create a new object. Otherwise, continue in this section.

Objects have different visual styles: colours textures and graphical design. In order to add a new
graphical style you need to know how to use and create materials and how to use and create
textures.

1. First, check if you are creating a new style that didn’t exist previously in your

world or if you are simply creating an existing style for your object. In the

former case, thing carefully the name of your style. Choose it in a way that it

will be clearly identifiable. In the second case, use the existing style name.

2. Create the new 3D model that will represent the object’s new style. A new style

can be a change of material and texture or even a completely new mesh.

3. Save the new model in the folder styles following the schema warehouses.

4. If you are using Blender, do not forget to unpack the textures and store them in

the folder textures in the object’s folder. If you are using another modeler,

separate the textures in a similar way.

5. Add the new style in the object’s definition file definition.xml.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 23

WP2 – Serious games development engine design and implementation

6. Import the object in the Unity3D scene and create the prefab.

1.3.3.2- Create a new state of an object

Suppose that the tomatoes of your world have only one state: full_raw. You need to

implement the action cut and add the state half_cut_raw to the tomato if you want to

design tasks requiring to cut tomatoes. Let’s do it.

7. Create a new state. It can include:

• Texture modification: either in your object’s modeler or directly in

Unity3D.

• Mesh modification: create a new 3D model with you 3D

modeller.

• New animation: create the animation with your 3D modeler.

8. Create a prefab for every state

9. Modify the object’s definition_file and the Add the definitions of the
structural objects in the file ProjectWorld.xml section. For instance, the

<states>

</states>

<style name="kumato"> <!-- kumato will be the id of the

style -->

<name>Kumato</name> <!-- Style name -->

<description>Tomato variant named

Kumato</description>

<!-- Definition of the style's tag:

- fruit: because a tomato is a fruit

- red: the color of the tomato.

-->

<tags>fruit, red</tags>

<!-- For texture changes: -->

<visual state="STATE_NAME">

<texture>TEXTURE_IMAGE</texture>

</visual>

<!-- For mesh changes: -->

<visual state="NOM_DE_L'ESTAT">

<model>NOM_DEL_.BLEND</model>

</visual>

</style>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 24

WP2 – Serious games development engine design and implementation

following definition file includes two states for a door object:

<objectdef id="door">

<states default="closed">

<state name="closed">

<action name="open">

<param name="animation">open</param>

<param name="state">opened</param>

</action>

<action name="navigate" function="place"/>

</state>

<state name="opened">

<action name="close">

<param name="animation">open</param>

<param name="state">closed</param>

<param name="reversed"

type="bool">true</param>

</action>

<action name="navigate" function="place"/>

</state>

</states>

</objectdef>

1.3.3.3- Add an existing behaviour to an object

Object’s behaviour depends on the actions that are enabled on them. In this section, you will
learn how to assign an existing action to a new object. For instance, add the action of
disintegration to another existing object.

1. Open the file definition.xml of an object that already has the desired behaviour and

copy the definition of the desired action.

2. Open the file definition.xml of the object to which you want to add the action. Paste

the code to every state that you want to have these actions. For instance:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 25

WP2 – Serious games development engine design and implementation

3. Check the definition of the parameters.

1.3.4- Create a new action for an object

If SeniorLudens Gamekit for Unity3D does not include any action that matches your needs, you’ll
need to implement the new action and assign it to your object. For this you will have to do:

Decide the identifier of your action, see How to create an identifier for an action, as example from now

on we use myAction as identifier.

Create the scripts for the action in C#, Scripts/cs/idCore.cs and Scripts/cs/id.cs

inside the warehouse folder of the object, where {id} is the capitalized version of the identifier in
this case MyAction.

Scripts/cs/MyActionCore.cs will define the action definition and the non-visual behavior

of your action.

Scripts/cs/MyAction.cs will contain the implementation of the action that will need access

to the visual layer logic, in this case Unity3D.

Take a look at the SeniorLudens API or the source code of the default actions to know more
about how to implement an action.

Add the new action to the definition of the object in the object definition file definition.xml as

well as in the project definition file MyProject.xml 15.

Register MyAction and MyActionCore in your configuration.

1.3.4.1- How to create an identifier for an action

We recommend to use a verb if it is possible, then the id will be the verb in infinite and in
lowercase, for example if your verb is “to break”, your identifier will be: break.

If your identifier is composed by more than one word you will join them capitalizing any word
except the first one, for example if your action will be ‘put At’, the id will be: putAt.

Identifiers are case sensitive putat is not the same as putAt.

<state name="full" model="apple">

<!-- for the state 'full' we already had the actions

navigate, pick an

<action name="navigate" function="place"/>

<action name="pick" function="directobject"/>

<action name="drop" function="directobject"/>

<!-- and we now add the action destroy -->

<action name="destroy" function="directobject"/>

</state>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 26

WP2 – Serious games development engine design and implementation

1.3.4.2- Examples

Along this section we demonstrate how to create actions with some examples. The actions
provided by the SeniorLu- dens Gamekit for Unity3D complement this section offering.

Example 1 In this example we will create a simple action which will display a message when
its called, the id for the action will be myAction.

First create the core for your action:

using System.Collections.Generic;

using SeniorLudens.Core.Action;

using

SeniorLudens.Core.Acti

on.ActionCalls; using

SeniorLudens.Core.Data

.Definitions;

public class MyActionCore : BaseAction {

protected readonly ActionDef definition =

SeniorLudens.Core.Data.Xml.WorldXmlReader.Read

@"<action name='destroy'>

<function name='directobject' control='true'/>

<function name='subject'/>

</action>");

public override ActionDef GetDefinition () {

// Define the definition, you can do it programatically

calling (new ActionDef()

// or using the xml definition of the action.

return definition;

}

public override bool CanDo (ActionSentence s) {

return true; // Is there any restriction with the objects

that can be checked by

}

public override IActionCall Call (ActionContext context,

ActionSentence sentence) {

// Create a new visual action call.

return new VisualActionCall(sentence.direct,

definition.id, context.actionParams

}

}

Now create the visual-action:

// Here we can use anything from UnityEngine

using UnityEngine;

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 27

WP2 – Serious games development engine design and implementation

using SeniorLudens.Core.Action;

using SeniorLudens.Unity.ActionComponents;

public class MyAction : ActionComponent {

// When extending an ActionComponent you have to provide the id

// of the action to the constructor.

public MyAction() : base("myAction") {

}

public override void Call(VisualObject object3d, ActionParams

param) {

// As we have access to the UnityEngine API, we can use

Debug.Log

// to display a message on the console.

Debug.Log ("MyAction called on object: " + object3d);

}

public override bool IsDone(){

// After displaying a message the action is done

return true;

}

}

Finally add those scripts to your configuration file (highlighted lines):

public class MyProjectConfiguration : SeniorLudensUnityAppConfiguration {

public override void Configure

(SeniorLudens.Core.Application app) {

app.AddAction(new MyActionCore());

}

protected override IEnumerable<Type> GetCustomActionComponents() {

return new Type[] {

typeof(MyAction)

};

}

}

Example 2: Using GUIAction Here we will skip the creation of MyActionCore.cs and use

the GUIAction as the core implementation for our action, this is a fast way to create a simple
action with all the logic on the visual layer, however it only can be used on objects as a direct
object action.

First create the visual-action:

// Here we can use anything from UnityEngine

using UnityEngine;

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 28

WP2 – Serious games development engine design and implementation

using SeniorLudens.Core.Action;

using SeniorLudens.Unity.ActionComponents;

public class MyAction : ActionComponent {

// When extending an ActionComponent you have to provide the id

// of the action to the constructor.

public MyAction() : base("myAction") {

}

public override void Call(VisualObject object3d, ActionParams

param) {

// As we have access to the UnityEngine API, we can use

Debug.Log

// to display a message on the console.

Debug.Log ("MyAction called on object: " + object3d);

}

public override bool IsDone(){

// After displaying a message the action is done

return true;

}

}

Note: Yes, the action implementation is the same as in example 1.

Now we will add the action to the configuration of your project:

public class MyProjectConfiguration : SeniorLudensUnityAppConfiguration {

public override void Configure

(SeniorLudens.Core.Application app) {

app.AddAction(new GUIAction("myAction"));

}

protected override IEnumerable<Type> GetCustomActionComponents() {

return new Type[] {

typeof(MyAction)

};

}

}

1.3.5- Remove objects from your world

In general, objects should not be removed from a world unless they are erroneous. You never
know if you may need them in a future scene!

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 29

WP2 – Serious games development engine design and implementation

If you really want to remove an object from your world, make sure that there are no instances
of it in any of the world’s scene. Then, remove its definition from the cml world definition file
and, if it has actions and specific behaviour, remove them from the Configure method of the world
configuration class.

1.3.6- Create a new object

You can create new objects either from scratch or by taking as a reference existing objects. The
latter way is faster and convenient whenever you need to create new objects of a same family
with different aspect and name but with similar behaviour, for instance an apple having already a
pear.

1.3.6.1- Create a different object similar to an existing one

Now, imagine that you need to create a rugby ball as a different object from the already existing
football, or, your world has tomatoes, but you need peppers. A pepper is essentially the same
object as a tomato, it has the same actions (to pick, to drop...) but with different name and
aspect. Let’s create an object using another as reference.

1. Create the new 3D model

2. Unpack the textures that are needed for the new object and save them in the folder
textures within the object’s folder.

3. Copy the file definition.xml of the object that is similar to yours and modify it to adapt it to

your object. Save the file in the object’s folder.

4. Import the object to Unity3D:

• As soon as Unity3D will open, the folder Materials will be created that contains the

materials that the object uses.

• Save it as a .prefab in the folder of the new object.

1.3.7- Create a new kind of object

1. Check that the type of object that you need is not currently provided by SeniorLudens

GameKit. Recall that several different objects can be of the same type. For instance,

there may be different objects of type “door” or “chair”.

2. Create a suitable name to the new type of object. Try to be precise, thinking that even

now your object is the first of a category, may be you’ll add others of the same category

later on, so don’t call it after its category but after its intrinsic nature. For instance, if

you put the name “fruit” to an apple, then you will not be able to distinguish between

fruits. Call it apple.

3. Add to the object definition file all the states and attributes it has. Modify accordingly

the MyProjectWorld.xml file. For instance:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 30

WP2 – Serious games development engine design and implementation

Add the description of the new object type to the documentation.

1.3.8- Create a component

The scope of a component defines if the component can be used only in one object or if it can
be re-used in other objects. In the former case, the component is called local, otherwise it is
called global. This section covers how to work with local components. To create a global
component, please go to Section Use an object as component.

The definition of a local component is inserted directly in the definition of the object that
contains it. To add a local component to an object definition just add a component element with
the attribute “name” with the name of the component:

Within the component block put the definition of the component which is like any other object
definition.

If your component is local but it appears in your object multiple times with different names, you will
write its definition only once within a component element as described above, and for the other
occurences you will use a componentref to refer to this complete definition of the component.

<componentref name="[name]" ref="this.[reference name]"/>

<component name="[name]">

...

</component>

<objectdef id="OBJECT">

<states default="DEFAULT_STATE">

<state name="STATE_1">

<action name="ACTION_1"

function="FUNCTION_ON_SENTENCE"/>

<action name="ACTION_2"

function="FUNCTION_ON_SENTENCE"/>

<action />

</state>

<state name="STATE_2">

<action name="ACTION_1"

function="FUNCTION_ON_SENTENCE"/>

<action/>

</state>

</states>

</objectdef>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 31

WP2 – Serious games development engine design and implementation

1.3.8.1- Use an object as component

1.3.8.1.1- Add the component to the object definition

To use an object as component in the definition of another object you have to use the
componentref element:

1.3.8.1.2- Add the visual object as a component of your object [unity]

To use an existing object as a component you have to include the object as a piece of the new
object and modify its properties to act as a component:

1 First of all create a instance of the object to use as component inside the main object
(drag the prefab of the object acting as component from the warehouse to the main
object in the scene).

2 Change the script of VisualObjectInstance unity component of the new instance for a
VisualComponentInstance script.

3 Complete the Component Name and the Component Form fields with the values that
you have defined in the componentref element of the object definition. For example:

Figure 5 – Add visual object to a component

1.3.8.2- Create a form

Forms are used to display messages, questions and other similar 2D panels. They consist of
a 2D layout on top of which different elements can be organized: images, text, input areas etc.
The warehouseSL provides standard forms that you can use directly or that you can take as a
basis to create new ones. Before creating a new form, check if already exists in warehouseSL
(objects -> GUI -> UI -> forms). If so, follow the instructions of Add a form to your scene.
Otherwise, keep reading this section.

<componentref name="[name]" ref="[object id]"/>

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 32

WP2 – Serious games development engine design and implementation

1.3.8.2.1- Create a new form from scratch

Design a form

We recommend you to design first your form in a piece of paper and after that, think about how
the user will interact with it, then you can start create the definition.

Create the definition

The organization of the different elements that compose a form is based on the concept of
Components. A form is an object composed of different components, on which the user or the
trainer (system) can interact independently. For instance, a basic existing form is the Message
Form. It has four components: the background, the panel, the title, the content (text) and a
confirm button.

As you have already designed your form on paper in the previous step, now and before
starting to write the object definition you have to detect if each element composing the form is a
component or not. For this you have to follow the following rules:

Does the element change if the user interacts with it?

Yes, it does -> It is a component or it is the form object itself.

No, it does not.

Can it be changed by the trainer (system)?

Yes, it can -> It is a component.

No, it cannot -> It is a graphical element of the form

Now that you know which elements are the part of form and which are components, you can start
writing the definition in the same way as for any other object in the platform. Before creating
any new component, check if it is already provided in the warehouseSL. If so, go to the section
Add a component to a form, otherwise, go to the section Create a new form component.

Create a new form component When you create a new form component, you have to decide
wether it will it be a component exclusive for this form or if it can be shared with future forms. If
you’re not sure about that, we recommend you to make it exclusive for this form.

If you have decided to make it exclusive to this form, follow the instructions Create a new
component. Otherwise, read Create a new object and after Use an object as component.

Note: The components provided by the SeniorLudens warehouse are built on top of Unity’s UI.

Add a component to a form In the warehouseSL there are also some examples of components
ready to add to your forms (objects -> GUI -> UI -> forms -> widget_examples), for instance:

 ‘form_label’

 ‘form_image’

 ‘form_button’

Once you find the object to use as component, you have to follow the section Use an object as
component to add the component to your form before continuing with these instructions.

Create the visual representation of a form in Unity 3D Now you have the definition for your
form, it is time to create the interface in Unity 3D, your form is composed by components and
some other graphical elements from the object itself.

Create a new form from an existing one

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 33

WP2 – Serious games development engine design and implementation

You can create a new form by adding an existing one, modifying it and storing it in the warehouse as a

new one. You will find existing forms in theSeniorLudens warehouse: objects -> GUI-> UI -> forms.

Besides, in objects -> GUI-> UI -> forms->questionsABC_form->examples you will find examples of

scenes and of tasks using the questionABC form.

To add an existing form, follow the steps described in see Add a form to your scene.

You can modify it by removing or adding components (see Add a component to a

form) and modifying the visual representation of the object in Unity 3D.

Once you have the new form, drag it to the warehouse (in order to create the prefab)

and create the definition file with all its components (as in Add an object to a world).

1.3.8.3- Add a form to your scene

Note: SeniorLudens Warehouse provides some forms. You can add them to your scene as
they are or modify them to create new ones.

To add a form to your scene, drag the prefab 16 to the Canvas of your scene. Once you add a
form you can adapt it to your scene look and feel, you can modify its appearance changing the
images of the panels and buttons or the size of the elements. If you modify it remember to
create a new style of the object in the warehouse! Then, add the definition of the object into your
world description and add the action fillFormAction in your world configuration file (see Add an
object to a world to learn how to to these two steps).

 Note: If your scene does not have a canvas:

Create it in Unity: GameObject → UI → Canvas

AAL-2013-6-039

SeniorLudens

Change the Render Mode of the Canvas component to Screen Space - Camera
and assign the GUI Camera of your scene.

1.3.9- Modify a scene

Use the Scenario Editor to create configurations of the scene: create, remove and move object
instances of your world.

If you want to modify structural elements of the scene, that you cannot edit in the Scenario
Editor, follow the steps of Section add new objects.

1.3.10- Add a new scene to your world

This section explains how to register new scenes. Currently, SeniorLudens allows you to have
only one scene aside from the introduction and conclusion, so be aware that this documentation
can change a lot.

1. First, create the scene. Do not forget to register it.

2. Then in the menu File -> Build Settings... -> drag the new scene from the Project panel
to Scenes in build.

Note: If the scene is the beginning or the end of a task, you should add it to the ProjectApp

component: With the object ProjectApp selected, in the Inspector panel, add the scene to the

suitable component of ProjectApp (e.g. to End Level if it is an end-task scene)

1.3.11- Build a game

To release a new version of a game you have to build it for each supported platform. However,
SeniorLudens Platform only has support for games built for Unity Webplayer, the

SeniorLuends Gamekit SDK for Unity3D provides also support to build webgl games. 17

SeniorLuends Gamekit SDK for Unity3D can be used to build the game. First go to Window →
SeniorLudens → SDK window, then choose the build version (development, production) for each
platform:

 Webplayer: builds the game as unity webplayer.

 WebGL (experimental): builds the game as webgl.

Important: If the game is build using File → Build Settings or File → Build & Run, then the world
descriptor will not be generated.

After choosing a platform the game will be built and stored on
the SeniorLudens Gamekit:
 webcontent/static/games/project_id/version_platform

Or for development builds:

webcontent/static/games/project_id/version_platform_dev

Note: Development or Production? A game for production normally provides a small executable, but
it’s harder to debug. Our recommendation is to build the game first for development,
test it (see test a game) and then build it and publish it on SeniorLudens Platform, see
upload a game.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 35

WP2 – Serious games development engine design and implementation

1.3.11.1- Test a game

Games built with the SeniorLudens Gamekit need a server to work, this server could be the
SeniorLudens Platform or the server provided by the SeniorLuends Gamekit SDK.

The game will be tested twice, first with the SeniorLuends Gamekit SDK and after, if everything
works fine, it will be uploaded to the platform to do the second test.

For the first test, the game needs to be built for webplayer using the development build, as
explained in build a game. Then:

1 Open the SDK website, usually at http://localhost:5000
2 Create a new scenario configuration with the scenario editor.
3 Test the game with more than one task

If all the steps went fine, it is time to upload the game to the game to SeniorLudens Platform.

1.3.11.2- Upload a game

Please, refer to the SeniorLudens Platform deliverables to know in detail how to upload a game.

1.4- Migrate a Unity Scenario

If you have already built a Unity3D scenario and you want to use it in SeniorLudens, it may

be better to start first by creating a very simple world from scratch in order to understand the

processes and concepts: Create a new world section. Once you’ll have done this first

experiment, you’ll be ready to follow these instructions:

1. First install the platform: Installation

2. Apply the basic settings: Basic setting for the creation of a new world

3. Create the projects files: SeniorLudens project files

4. Add an empty world object and define the world: Define the world

5. Create an empty scene object and define it: Create a scene

6. Create a new warehouse for your project: warehouses.

7. Add the objects of your scenario to the warehouse: for every object, create a prefab

(if needed), store it in the warehouse following SeniorLudens pattern and create the

corre- sponding definition files: Create a new object.

8. For all the prefabs add the VisualObject component: Unity_objects.

9. Add the definition of all the objects in the world definition file.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 36

WP2 – Serious games development engine design and implementation

2- Scenario Editor

2.1- Introduction

The Scenario Editor is part of the SeniorLudens GameKit. Users that create scenario
configurations are Trainers with the corresponding permissions. The Scenario Editor is
implemented as a SeniorLudens game. Thus, it does not require programming skills.

The Scenario Editor is the SeniorLudens tool used to create different scenario configurations
out of a predefined SeniorLudens World. There is one Scenario Editor Game for each
SeniorLudens World. Each configuration is based on the same structure (World) and differs only
by the set of tangible objects that are located within the scenario. Variations introduced by
scenario configurations are essential to avoid player’s boredom and to promote adherence to
the games but also allow different learning goals in the same environment.

2.2- Installation

The Scenario Editor is available as a prefab at the SeniorLudens Warehouse, in order to include
it in your world drag the prefab into your scene.

Now you have to configure some options of the scenario editor, as the scenario editor is build
using a Canvas element you have to define the camera and the render mode; we recommend
you to use the camera named GUI from the avatar and a distance of 80.

2.3- Access

The Scenario Editor is integrated in the SeniorLudens platform and therefore can be accessed
from within it. The user needs a username and password with the correct access rights (role)
set to access it.

The steps that users must follow to access the Editor are the following:

1. To access the Scenario Editor the user has to direct their browser to the url of the
SeniorLudens platform where he can enter his credentials. In order to access the
editors the user must sign in as a Manager (Checkbox).

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 37

WP2 – Serious games development engine design and implementation

Figure 6 – Login View on SeniorLudens platform

2. After the sign-in process the SeniorLudens platform opens and the menu is shown on
the left side of the screen. In the block Creation the ScenarioManger is listed.

Figure 7 – Access to Task Manager

3. With a click on Scenario Manager, it is opened an overview on all scenarios that have
been created and to which the user has access.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 38

WP2 – Serious games development engine design and implementation

Figure 8 – Scenario Manager

4. Within the Scenario Manager the user can:

 Create an new scenario from an existing world

 Edit an existing scenario by clicking on the icon.

 Delete an existing scenario by clicking on the icon.

When the user is clicking on the Edit icon the Scenario Editor is started and the scene can be
changed as described in Features.

Figure 9 – Scenario Editor

2.4- Features

2.4.1.1- Show and hide the Menu System

When the Scenario Editor is started the scene is shown in game mode (as it is seen by an end
users). By pressing the Alt-Key the Menu System is activated.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 39

WP2 – Serious games development engine design and implementation

Figure 10 – Scenario Editor Menus

The Menu System is divided into two parts. An upper part with object related functions on the
right side and Menu related buttons on the left side and a lower part where the object browser is
shown.

The Menu System can be closed by clicking on the HIDE-Button.

2.4.1.2- Show and filter available items

When the Menu System is activated the object browser is shown at the bottom of the screen.
The object repository might contain quite a lot of objects. You can browse through all the objects
by using the arrows on the left and right.

Searching manually for an object might become a lengthy process. To speed this up the object
browser has two filters.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 40

WP2 – Serious games development engine design and implementation

Figure 11 – Scenario Editor Search filters

The left filter is a search filter and shows all items that contain the entered characters.

Figure 12 – Scenario Editor Negative filters

The right filter is a negative filter and is excluding all items that contain the entered text.

In order to find an object the two filters can be combined as seen in the two previous pictures.
One filter is filtering the result set of the other one. This allows the user first to limit the available
objects to a series of objects e.g. Gym related and then to exclude objects he does not want to
see e.g. pad.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 41

WP2 – Serious games development engine design and implementation

2.4.1.3- Select an item

Once an object that the user wants to be available in the scenario is found it can easily be
grabbed by just clicking on it.

Figure 13 – Scenario Editor Item Selection

When an item in the object browser is clicked it appears in the middle of the screen and
becomes the cursor. At the same time the menu system is automatically closed.

Figure 14 – Scenario Editor Item Release

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 42

WP2 – Serious games development engine design and implementation

It is recommended to decide where to put the object before it is picked from the object browser
and to make sure that this position is visible on the screen beforehand.

2.4.1.4- Drop an item

When an object is selected as shown in the previous images, it can be positioned within the
scene by clicking on the position where it should be.

Figure 15 – Scenario Editor Drop Item

The object is automatically moved to the position on which the user has clicked.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 43

WP2 – Serious games development engine design and implementation

Figure 16 – Scenario Editor Drop Release

When it is successfully positioned the cursor changes back to its hand shape.

2.4.1.5- Rotate an item

When the rotation of an object needs to be changed the user first has to make sure that the
object is visible on the screen. If this is not the case the view within the scenario can easily be
changed by using the mouse.

Figure 17 – Scenario Editor Rotate Item

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 44

WP2 – Serious games development engine design and implementation

Once the item is visible on the screen the menu system must be activated by clicking on the Alt-
Key.

Figure 18 – Scenario Editor Rotate Action

In the top bar of the menu system the user must click on the button Rotate.

Figure 19 – Scenario Editor Rotate Action on item

When Rotate is activated, each click on the object rotates it by 45 degrees.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 45

WP2 – Serious games development engine design and implementation

2.4.1.6- Delete an item

When an object needs to be deleted from the scene the user first has to make sure that the
object is visible on the screen. If this is not the case the view within the scenario can easily be
changed by using the mouse.

Figure 20 – Scenario Editor Delete Item

Once the item is visible on the screen the menu system must be activated by clicking on the Alt-
Key and the delete action can be activated by clicking on the Delete button in the upper bar of
the menu system.

Figure 21 – Scenario Editor Delete Action

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 46

WP2 – Serious games development engine design and implementation

Once the delete action is activated and the user clicks on the item that he wants to disappear
from the scene, the item is deleted.

2.4.1.7- Save the configuration

From time to time the changes done within a configuration should be saved.

Figure 22 – Scenario Editor Save configuration

In order to save a configuration the menu system must be activated by pressing the Alt-Key. A
click on the Save button in the upper right corner of the menu system saves the actual status of
the scene.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 47

WP2 – Serious games development engine design and implementation

3- Task Editor

3.1.1- Reference site

The task editor is deployed in an intermediate server located at: http://selte.cbim.it/. However it
is integrated inside the SeniorLudens Platform infrastructure by using the SeniorLudens Storage
Server. The Editor is accessible through the platform url: http://demos-innovation-labs.com/sl/ .

3.1.2- Introduction

The task editor is the tool used by the trainer to design the reference task for the trainee and
define the different roles of the characters.

Deploying the full state diagram of all possible user actions is very tedious and prone to errors.
Therefore, the task editor tool will require trainers to define only the reference task, this is the
correct way of doing things.

For the reason Task Editor Tool makes use of Blockly as Visual Editor that allows users to write
flows by plugging blocks together.

The reference task is defined in terms of actions structured as sequential or parallel
compositions. Sequential compositions mean that the actions must be done one after the other,
and parallel compositions mean that a subset of the actions of the bloc must be done no matter
in which order. During the game play, all user interactions are interpreted as action queries.
The action queries are evaluated in comparison to the reference task to know if they are correct
or no. If they are correct, they are done. Otherwise, they can be done and evaluated as
incorrect or forbidden to provide a free-of error learning process.

3.1.3- Access

Task Editor is integrated in SeniorLudens platform, so the primary access is needed to be
performed through it. The user needs to validate its credentials with the system, in order to have
granted access into the SeniorLudens Security system. By doing so, the users identify
themselves with the specific roles that they have in the organization. The steps that users must
follow to access the Editor are the following:

5. To access Task Editor the users introduce their credentials into login view, as can be
seen in the figure below. It is important to tick in the manager checkbox, because the
Editor is only accessible through the Management Portal. The users must own a
manager role in the system to access the Management Portal.

http://selte.cbim.it/
http://demos-innovation-labs.com/sl/

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 48

WP2 – Serious games development engine design and implementation

Figure 23 – Login View in Platform

6. Once the user has been validated in the system as manager, they can visualize the
dashboard of the organization. After this step, they can click on the Task Manager
option located in the side menu.

Figure 24 – Access to Task Manager

7. After selecting this option, the Task Manager is open. This view permits the managers
to organize all the task descriptors defined in the system. Among the features of the
view, it permits two essential actions directly related with Task Editor:

 Edit existing descriptors: This action is performed when the user selects the button
edit included in each row of the manager. If the user clicks on this button, the Task
Editor will be loaded with the specific information of the selected task descriptor.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 49

WP2 – Serious games development engine design and implementation

 Create new Task descriptors: This action is activated by clicking on the button
create, located on top of the Task Manager View.

Figure 25 – Task Manager

When the creation option is selected, the system requests the user to choose an existing
scenario descriptor in which the new task descriptor will be based. This step is only requested in
the creation not in the edition.

Figure 26 – Create new Task Descriptor

The last step is the visualization of the Task Editor embedded into the platform. Depending on
the option chosen (edit or create), the editor is adapted and loads the needed descriptors from
the SeniorLudens infrastructure.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 50

WP2 – Serious games development engine design and implementation

Figure 27 – Task Editor loaded

3.1.4- Features

3.1.4.1- How include new blocks

You can find the existing set of blocks in the toolbox (Task blocks) as follow:

Figure 28 Toolbox which include complete set of blocks

The mandatory type blocks are as follow:

 Stage

 Track

 Sequence or At the same time

 Action

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 51

WP2 – Serious games development engine design and implementation

3.1.4.2- Workspace

Workspace is the section which include the blocks used to model the task

Figure 29 Task Editor working area

To inject a block into workspace is enough select the desired block from toolbox and drag it on
workspace

3.1.4.3- Modify within the block

3.1.4.3.1- Duplicate

This feature provides to duplicate the workspace selected block.

3.1.4.3.2- Delete

This feature provides to remove the workspace selected block.

3.1.4.3.3- Run a contextual description of block

Example:

We can try to put into the workspace the Action Block and with right click of mouse on the block
area, testing the functions as listed above:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 52

WP2 – Serious games development engine design and implementation

Figure 30 How modify an action block

Meanwhile, only for types Stage and Track, you can “rename” the title of the block.

For example, we can try to put into the workspace the Stage Block and with left click of mouse
on the dropdown area, testing the function “New variable”:

Figure 31 How modify stage/track block

3.1.4.4- Load existing task descriptor

You can load an existing task by clicking on “go to an object” within left menu (Load existing
tasks) as follow:

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 53

WP2 – Serious games development engine design and implementation

Figure 32 How load existing task

3.1.4.5- Create new task descriptor

After inserting or modified an existing task, you can create and show new task descriptor simply
clicking “Creating the new TE descriptor” within the left menu (task editor) as follow:

Figure 33 How create new TE descriptor

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 54

WP2 – Serious games development engine design and implementation

Figure 34 Visualization of the new TE descriptor XML

3.1.4.6- Put action modules in parallel

Task editor is able to manage the action block also in parallel to communicate to the Training
Program Module how the action should be execute, at the same time or in sequence.

Example:

We can try to put a parallel block into a clean workspace and insert two actions block into this
one as follow:

Figure 35 How manage the action blocks in parallel

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 55

WP2 – Serious games development engine design and implementation

4- Training Plan Editor

4.1.1- Introduction

This Editor is in charge of the training plan descriptor management. This fact means that it is
placed in the last step of the descriptors structure. Because of this, training program descriptor
is based on a set of task descriptors, and it is considered as the last descriptor needed to
identify a Serious Game in SeniorLudens.

The Training Plan Editor has the objective of creating a list of Tasks configured with a
determined level of difficulty. This goal is achieved by a process in which the user is able to
configure Task with difficulty Level, so we can distinguish the following elements:

 Task: This element coincides with a Task descriptor included in the current
organization. These elements are considered the basis of the training plan, as it is
composed by an ordered set of them with a specific configuration.

 Level: This element is the specific configuration in which a Task can be arranged. This
difficulty level is defined by the values of some predefined fields connected internaly
with SeniorLudens Game Engine. These fields have been detailed in D2.2

4
.

The level of difficulty of a Task is considered by the conjunction of a Level and by the specified
number of repetitions needed to be completed by the player user.

Training Plan Editor has been fully developed, and partially integrated in the platform. It is still
pending for the needed connections with SeniorLudens Storage Server, which will ensure the
access to the created descriptors.

4.1.2- Access

This editor has been developed on top of the SeniorLudens infrastructure and it uses the same
development stack. It has paved the way to the current integration level inside the
SeniorLudens ecosystem. The editor can be accessed through the platform, using the users’
role system and the security layer implemented as main base of the Platform. Based on this, it
can be accessed through the platform url: http://demos-innovation-labs.com/sl/ .

Going into details of the access to the Training Plan Editor, it can be done through the following
steps:

1. To access Training Program Editor, the users must validate their credentials using the
platform login view. The editor is only accessed through the Management Portal, so the
users must tick in the manager checkbox in the login form. To validate inside the
Management Portal, the user must possess any of the management roles (See D1.1

5
).

4
 D2.2 – Scene, task and gamability editors.

5
 D1.1 – Users requirements

http://demos-innovation-labs.com/sl/

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 56

WP2 – Serious games development engine design and implementation

Figure 36 – Platform Login View

2. After the users validate successfully in the platform, they have access to the
management dashboard. In consequence they have access to the different tools
involved in the game definition in the selected organization. The users have to select
Training Plan Manager in the side menu, located under Create Games parent menu. It
is catalogued in this way, becauser this menu comprises all the tools used by managers
for game creation in SeniorLudens.

Figure 37 – Create Games Menu

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 57

WP2 – Serious games development engine design and implementation

3. Hence the Training Plan Manager is visualized in the platform. This manager is in
charge of administering all the training plan descriptors in the selected organization. For
this reason it shows a different row per each one of the existing training plan descriptors
in the system. If the user desires to create a new training plan descriptor using the
Training Plan Editor, they have to click on Create New button, which is located in the
top bar of Training Plan Manager, as it is shown below.

Figure 38 – Training Plan Manager

4. Once the user has selected this option, the platform loads Training Plan Editor and it is
visualized to the user transparently to the user. In contrast with what was shown in Task
Editor, the creation of a new Training Plan descriptor does not imply the selection of any
task descriptor (because task descriptor is the lower level), because the Training Plan
descriptor can use any Task descriptor previously uploaded into the organization to
create the final descriptor. Because of this, the information is not needed and neither
requested.

4.1.3- Features

Training Plan Editor pursues the objective of creating an ordered list of tasks with a specific
difficulty configuration. This difficulty is defined as the union of the number of repetitions and the
specific Level defined in the Editor. The users can create so many Levels with different
configurations as they desire. There is a default Level, called Level 0, which defines the difficulty
base for any task in the system. This default level cannot be deleted or modified.

It is important to clarify, that Training Plan Editor is fed from the Task available in the current
organization, so they are loaded asynchronously when the editor is loaded. Only descriptors in
the current organization are shown, and are accessible to be used in the editor. In the same
way, the resulted Training Plan descriptor will be stored in the current organization in which it is
being created.

The main operation available in Training Plan Editor consists on dragging and dropping the
Task Elements into the Main Canvas. By this simply action the Tasks are included inside the
Training Plan descriptor model.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 58

WP2 – Serious games development engine design and implementation

It is possible to include a same task as many times as the user desires. All of these replicas will
be considered to have an individual configuration.

In the current integration only creating has been deployed, but will be adapted to include the
editing mechanisms together with the fully integration with SeniorLudens System.

4.1.3.1- Main View

The editor is composed by a set of individual elements with different function in the Training
Plan definition. The appearance of the view is divided into three columns. The left column is
reserved for the input elements, which are considered as the source elements in the editor. The
central column is the canvas in which the list of configured tasks is created. The right side is
reserved to show the details of the different elements and also to their internal management.

Figure 39 – Training Plan Editor

We are going to make a review on the different components that compose the editor, defining
the different features of each of them.

4.1.3.2- Source elements

The source elements are defined by the union of the two different actors involved in the training
plan definition: Levels and Tasks. These both elements are the basic bricks in which the
descriptor is based.

4.1.3.2.1- Task

This component is located in the upper left side of the editor. It is responsible to load
asynchronously the Task descriptors available in the current organization. These descriptors are
represented as individual rows in the component. These rows are intended to be dragged into
the main canvas to compose the descriptor structure.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 59

WP2 – Serious games development engine design and implementation

Figure 40 – Task Elements

4.1.3.2.2- Level

This component is located under the Task component. It is in charge of the management of the
different Levels defined in the current training plan. In the same way the Task component does,
it represents the different levels as individual rows, but they are not draggable because they are
considered simply configuration modules for the tasks included inside the training plan.

Figure 41 – Level Elements

The component also includes the Add Level action. It is located on top of the component and it
permits to create new customized levels. The creation is performed through the Details View.
After the creation in Details View, the new Level is represented as another row in Level
Component.

The component also permits to visualize the configuration of the level by examining the value of
the different fields which compose it. This information is shown in the Details View, which
includes options to modify and update the individual fields.

The component includes a default Level called Level 0. This level is considered the default level
of difficulty for all tasks from the moment in which a new Task is included inside the canvas. The
default level cannot be modified.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 60

WP2 – Serious games development engine design and implementation

4.1.3.3- Training Plan Main Canvas

This component represents the main work space in the editor, as it is the place in which the
tasks are dropped and included inside the training plan descriptor under creation.

When a Task is dropped, the element is transformed to a configurable Task. It means that it is
appended the number of repetitions and the level of difficulty. By default the number of
repetitions is set to 1 and the default level of difficulty.

Once the Task has been included it can be reorder in the canvas by simply dragging and
dropping to the new location. It will adjust the other tasks accordingly.

Figure 42 – Training Plan Main Canvas

A Task can be replicated as many times as the user desires with same or different
configuration. It means that the user has full control over the training plan definition.

The user can modify the configuration of each individual task included by just clicking on it. It will
display the information in the detail view. This information is also updatable from this view. If any
change is performed, it will be updated in the canvas immediately.

The canvas also visualizes the general actions for the editor in the top bar. These general
actions are save and quit. For the moment the connection with Storage Server has not been
fully integrated so the generated descriptors are not visualized in the Training Plan Manager.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 61

WP2 – Serious games development engine design and implementation

4.1.3.4- Detail view

This component is in charge of visualizing all the information contained by the different elements
that compose the training plan descriptor. This information is divided between the two source
elements available in the editor: Task and Levels.

This component also provides the update mechanisms on these elements. After any change it is
forwarded to the origin component responsible for the specific element.

4.1.3.4.1- Task Details

The task details are shown when the user selects any task included inside the Main Canvas. In
the view is displayed all the configurable fields of the task: number of repetitions and the specific
level of difficulty. Only the levels defined in the current training plan descriptor are selectable for
the definition of the task difficulty.

Figure 43 – Task Details

The view permits to update the task configuration. After any change, it is forwarded to the Main
canvas which updates the information of the modified task. If the task is replicated in the training
plan, only the edited task is modified.

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 62

WP2 – Serious games development engine design and implementation

4.1.3.4.2- Level Details

The level details are visualized when the user selects any Level in Level Component. It displays
a tabbed view in which all the fields which define the Level are shown (these fields are detailed
in D2.2

6
). These fields are organized in three categories:

 Metadata: It represents the general information of the level. It is important to highlight
that in case of editing the Level, the id and the name are not modifiable to guarantee
the consistency of the descriptor information. In case of creation, the id is modifiable
neither, to avoid collisions in the internal data model.

 Factors: These fields are multipliers connected with internal fields defined in
SeniorLudens Game Engine.

 Helpers: These helpers are intended to modify the behaviour of the game depending of
the needed level of assistance requested for the users.

Figure 44 – Level Details

These fields shape the difficulty of the level. In case of the default level, it is not possible to
modify the fields, as it is considered the base level in the editor.

6
 D2.2 Scene, task and gamability editors

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 63

WP2 – Serious games development engine design and implementation

Figures and tables

Figure 1 Enable Visible Metafiles .. 10

Figure 2 Set default actions ... 11

Figure 3 Configure MyWorld Configuration ... 14

Figure 4 Complete Scene configuration .. 15

Figure 5 – Add visual object to a component .. 31

Figure 6 – Login View on SeniorLudens platform ... 37

Figure 7 – Access to Task Manager ... 37

Figure 8 – Scenario Manager .. 38

Figure 9 – Scenario Editor ... 38

Figure 10 – Scenario Editor Menus ... 39

Figure 11 – Scenario Editor Search filters .. 40

Figure 12 – Scenario Editor Negative filters .. 40

Figure 13 – Scenario Editor Item Selection ... 41

Figure 14 – Scenario Editor Item Release .. 41

Figure 15 – Scenario Editor Drop Item .. 42

Figure 16 – Scenario Editor Drop Release ... 43

Figure 17 – Scenario Editor Rotate Item ... 43

Figure 18 – Scenario Editor Rotate Action .. 44

Figure 19 – Scenario Editor Rotate Action on item ... 44

Figure 20 – Scenario Editor Delete Item ... 45

Figure 21 – Scenario Editor Delete Action .. 45

Figure 22 – Scenario Editor Save configuration .. 46

Figure 23 – Login View in Platform ... 48

Figure 24 – Access to Task Manager ... 48

Figure 25 – Task Manager .. 49

Figure 26 – Create new Task Descriptor .. 49

Figure 27 – Task Editor loaded ... 50

Figure 28 Toolbox which include complete set of blocks .. 50

Figure 29 Task Editor working area .. 51

Figure 30 How modify an action block .. 52

Figure 31 How modify stage/track block ... 52

Figure 32 How load existing task .. 53

Figure 33 How create new TE descriptor .. 53

Figure 34 Visualization of the new TE descriptor XML ... 54

Figure 35 How manage the action blocks in parallel... 54

Figure 36 – Platform Login View ... 56

Figure 37 – Create Games Menu .. 56

Figure 38 – Training Plan Manager ... 57

Figure 39 – Training Plan Editor.. 58

Figure 40 – Task Elements ... 59

Figure 41 – Level Elements ... 59

Figure 42 – Training Plan Main Canvas .. 60

Figure 43 – Task Details ... 61

Figure 44 – Level Details ... 62

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 64

WP2 – Serious games development engine design and implementation

AAL-2013-6-039

SeniorLudens

Date

10/2015

D2.5 - Serious Games development engine (M19)
Page 65

WP2 – Serious games development engine design and implementation

Acronyms

Acronym Explanation

SL SeniorLudens

SLGK SeniorLudens Game Kit

SDK Software Development Kit

TE Task Editor

