

AMBIENT ASSISTED LIVING JOINT PROGRAME

AAL-2013-6-039

SeniorLudens

Serious Games development platform for older workforce
training and intergenerational knowledge transference

D3.5

SeniorLudens serious game engine

and platform technical evaluation

report (1)

Workpackage WP3 - SeniorLudens platform design and implementation

Lead beneficiary INDRA

Editor(s)

Dani Tost- CREB-UPC

Ariel von Barnekow – CREB-UPC

Núria Bonet Codina – CREB-UPC

Salvador Aguilar - INDRA

Contributor(s) Stefano Puricelli - CBIM

Reviewer(s)
Stefano Puricelli - CBIM

Salvador Aguilar - INDRA

Release Date 03/2015

Version V1.0

Circulation
Project Partners, AAL Control Management Unit, and National
Funding Agencies.

AAL-2013-6-039

SeniorLudens [Project lo

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 2

WP3 – SeniorLudens platform design and implementation

AAL-2013-6-039

SeniorLudens [Project lo

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 3

WP3 – SeniorLudens platform design and implementation

Table of Contents

ABSTRACT ... 4

1- SENIORLUDENS GAME ENGINE ... 5

1.1- GAME KIT ... 6
1.1.1- Game-loop structure and implementation .. 8

1.1.1.1- Main components ... 8
1.1.1.2- Game loop actions ... 9
1.1.1.3- SLGK and Game Engine processing levels ... 10

1.1.2- User-driven actions parsing ... 12
1.1.3- Reference Task Tracking ... 12
1.1.4- Objects ... 13
1.1.5- Actions ... 14

1.1.5.1- Actions provided by the game kit ... 15
1.1.5.1.1- Atomic actions ... 15
1.1.5.1.2- Complex actions: ... 15

1.1.6- SeniorLudens Game Kit SDK .. 16
1.1.6.1- Warehouses ... 17

1.1.7- Game Kit evaluation ... 19
1.1.7.1- Evaluation results ... 19
1.1.7.2- Game kit Questionnaire.. 20

1.2- SCENARIO EDITOR .. 23
1.2.1- Objects ... 23
1.2.2- Actions ... 24

1.3- TASK EDITOR .. 25
1.3.1- Implemented solution ... 25
1.3.2- Main components ... 25
1.3.3- Frontend ... 26

2- SENIORLUDENS PLATFORM ... 28

2.1- STORAGE SERVER .. 29
2.1.1- Implementation .. 30

2.1.1.1- SeniorLudens Platform schema ... 30
2.1.1.2- SeniorLudens descriptors schema ... 32

2.2- SENIORLUDENS PLATFORM ... 37
2.2.1- Implementation .. 37

2.3- EVALUATION ... 42

FIGURES AND TABLES .. 44

ACRONYMS .. 46

AAL-2013-6-039

SeniorLudens [Project logo]

Abstract

This document comprises the technical definition and evaluation of the major elements in
SeniorLudens System: SeniorLudens Game Engine and SeniorLudens Platform.

SeniorLudens Game Engine is detailed in the first section, which is composed of two parts: in
the first part it describes the SeniorLudens Serious Game Engine composed by the Game Kit
(SLGK), Task Editor, Scenario Editor and the Training Program Editor. It defines the current
features of the software, its structure and the tools used for its development. This part
completes the definition of the game engine presented in Deliverable D3.1 and the user manual
that comes with the demonstrator D2.5. The second part of the deliverable is devoted to the
evaluation of the platform, focusing on the component which will not be covered by D4.2 the
game kit. The evaluation has been done after a questionnaire for developers of new worlds on
top of SLGK have answered about the capabilities, usability and development speed.

SeniorLudens Platform is covered in the second section, following the same two parts utilized in
the previous section. The first part details the overall design of the present status of the
development. The second part intends to detail the current evaluation of the system according
with the technical requirements defined at the beginning of the project.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 5

WP3 – SeniorLudens platform design and implementation

1- SeniorLudens Game Engine

SeniorLudens Game Engine is formed by four of the components of the SeniorLudens platform,
the training program editor, the task editor, the scenario editor and the game kit.

SENIORLUDENS GAME ENGINE

Game kit

Scenario Editor

Task Editor

 Training Program Editor

Figure 1- SeniorLudens Game Engine Components

This document covers the three game engine components developed during this phase of the
project.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 6

WP3 – SeniorLudens platform design and implementation

1.1- Game Kit

The SeniorLudens Game Kit (from now on SLGK) provides an abstract definition of the virtual
environments and the training activities that can be performed in them, and it implements these
definitions on top of a game engine in order to allow the creation of training game. Currently,
the SLGK has an interface to Unity3D, but it could be extended to other Game Engines.

The aim of SLGK is to provide enough functions to design and implement serious games for
training. The objects and actions provided by the toolkit will give support to all the requirements
of the three use-cases: traditional cheese creation, rehabilitation planning training and IT project
planning and development. These three use-cases represent a wide range of objects and
situations; therefore, SLGK will allow to use these functionalities to create new games in new
virtual worlds with a large variety of actions and behaviours, without need to program new
features. However, SLGK is opened to add new categories of objects and new actions.

In terms of simulation of real-world situations, SLGK provides the following features:

 Type of environment and perspective

 3D indoor environments (see Figure 2): with navigation restricted to relatively
small paths, navigation of a first-person perspective at the human height
(human-walk view). In these environments, the perspective on the objects is
near, thus, on one hand, objects should have a more accurate representation
and, on the other hand, user interaction can be more precise. The collision of
the user-avatar tied to the camera with the scenario should be controlled in
order to avoid the user penetrations into walls and furniture.

Figure 2 - Example on an indoor SeniorLudens scene. This scene was designed during the first
phases of development, as a proof-of-concept of the SLGK.

 3D outdoor environments (see Figure 3 - Example of an outdoor environment.
In this case it is a scene of the case study GrowYourProject.). In these
environments the camera perspective can be set to isometric view, with the
camera floating far from the scene on an elevated plane (air-plane view). In
these environments, the number of objects can be higher, because the
landscape is larger, but the level of details needed for their representation can
lower that in the former case. In general, the collisions of the user avatar with
the scenario are avoided, because there are no objects in the camera plane. In
these environments, even much more than in the closed environments,
complementary tools of camera handling are necessary in order, for instance, to
zoom-in and zoom-out or change the view from air-plane to ground view. These

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 7

WP3 – SeniorLudens platform design and implementation

actions are not provided in the current version of the SLGK, but they are
planned for the next release.

Figure 3 - Example of an outdoor environment. In this case it is a scene of the case study
GrowYourProject.

 Automatic navigation: a click on an object drives the virtual avatar and the associated
camera near enough to the object to include it within the selection range.

 Selection by click on an object: a click on an object near enough to the camera results
on a selection of the object. If the click is done through a mouse o keyboard device, the
selection allows to distinguish which kind of selection has been done (primary,
secondary or, eventually, higher order)

 Basic and specialized objects behaviours.

 Interfaces (see Figure 4):

Every world can have one or more interfaces available composed of messages boxes
and option menus. The actions currently available on these interfaces are the following:

◦ Show a specific interface item

◦ Hide a specific interface item

◦ Modify the text contents a specific interface item

◦ Show a specific panel of the interface

◦ Hide a specific panel of the interface

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 8

WP3 – SeniorLudens platform design and implementation

Figure 4 - An example of an interface object provided by SLGK. It is the preliminary interface used
in the Scenario Editor Game. The interface is composed of four panels (surrounded in red). SLGK

provides actions to show and hide them and modify the text of the buttons. The interface also
contains a message box currently hidden by the objects menu at the bottom part of the screen.

1.1.1- Game-loop structure and implementation

1.1.1.1- Main components

As explained in Deliverable 3.1, games occur in Scenes of Worlds. The set of scenes of a game
forms a Scenario. The initial setting of each scene is called Scene Configuration. A scene
configuration defines the position, orientation, state and visual style of every object instance
present in the scene. Throughout the game, as a consequence of user actions, time-dependent
events or system actions, the state, position, orientation of these object instances can change.
Some of them can disappear and other be created. Each game has a narrative thread,
composed of three stages (introduction, development and conclusion) each divided into
different tracks that define the expected behaviour of the trainee, i.e. the actions that he/she is
expected to launch, the autonomous behaviour of the objects and the trainer actions.

SLGK games is thus structured around three basic elements (see Figure 5: The three
SeniorLudens games main elements: the World, the Scene Configuration built from the
Scenario description file and the Reference Task built from the task description file.):

- The definition of the World embedded in the code,
- The configuration of the scene built from an xml file (Scenario Description File) created

in the Scenario Editor
- The Reference Task built from an xml file (Task Description File) created in the Task

Editor.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 9

WP3 – SeniorLudens platform design and implementation

Figure 5: The three SeniorLudens games main elements: the World, the Scene Configuration built
from the Scenario description file and the Reference Task built from the task description file.

1.1.1.2- Game loop actions

In run-time, a game is structured on top of a loop (game-loop) that processes user-events,
executes system actions including action driven by the virtual trainer character and object's
actions, computes collisions and draws the scene (see ¡Error! No se encuentra el origen de
la referencia.).

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 10

WP3 – SeniorLudens platform design and implementation

Figure 6: Actions that may occur at each loop of the game: trainee-driven actions, objects-
driven action and trainer-driven action.

Specifically, trainee-driven actions are launched through user-interactions on visible objects.
Every user interaction is analysed and eventually mapped to a trainee-driven action that is
realized according to the current permissions regulated by levels of difficulty. Objects-driven
actions occur because objects have an autonomous behaviour regulated by a time-clock (for
instance, animations), or as responsive behaviour to interactions with other objects. For
instance, collisions between objects yield objects movement. Some objects are connected on to
the other and thus a change in one object yields to changes on the other. For instance, a
thermometer changes its temperature attribute according to the object that it monitories. Finally,
trainer-driven events are system-actions that represent the behaviour of the trainer. They can be
programmed tasks, either depending from time or from the state of the scene or the scoring of
the game, or they can be responsive actions to user actions or omissions (messages,
corrections…etc.).

1.1.1.3- SLGK and Game Engine processing levels

The SLGK is composed of two layers: the abstract layer, independent from the visual
implementation and the interface layer that in charge of the communication with the game
engine (Unity3D). The implementation of the game-loop occurs at two different levels: at the
game-engine (Unity3D) level and the SLGK level. Some actions are done at the abstract level
and others at the visual level. The intermediate layer of the SLGK is in charge of the
communication between the abstract layer and the game engine. Figure 7 shows schematically
the level of the different actions.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 11

WP3 – SeniorLudens platform design and implementation

Figure 7: The two-levels of actions processing in SLGK. In blue the abstract layer and in orange the
game-engine level.

Specifically, the game engine is responsible of collecting user input: mouse movement and
button clicks, keyboard keys or screen touch in touch devices. The current version of SLGK is
restricted to mouse and keyboard events, but in the next release its extension to touch devices
is foreseen. User clicks are classified into primary or secondary events depending on if they are
done with the LMB (currently set to primary) or (RMB) (currently set to secondary). Higher order
actions can be associated to other types of input. Primary, secondary and higher order input
categories allow to discriminate between possible actions available on an object.

User events can be classified into two main types:

- Selection: currently mouse-click on an object
- Camera orientation: currently mouse movement

The events that are recognized as camera orientation are directly held at the Unity3D level
without passing to the abstract layer. Selection events are notified to the SLGK: selected object
and action level (primary/secondary). The SLGK Selection Parser determines which action is
being requested by the trainee and eventually launches the action.

Unity3D also manages timers and informs the SLGK. Taking into account time, the objects
behaviour and the reference task, the SLGK also programs objects actions and trainer actions
as explained in Section 1.1.1.2-.

The action processing is done at the SLGK engine level that modifies the world objects
accordingly and launches visual actions at the game-engine level (Unity3D). Navigation,
animation and sounds are actions that last through time. Thus, for these actions, and for
efficiency reasons, the SLGK only requests their start. Then, during the entire time interval that

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 12

WP3 – SeniorLudens platform design and implementation

they last, it is the Game Engine that updates them without need of passing through the SLGK
level. The game engine notifies SLGK that they have ended. Navigation uses the Unity3D
physics engine in order to detect and prevent collisions. This avoids that the user avatar could
penetrate into solid objects. Currently, the geometrical transformation of the objects (grab, rotate
and scale) is not connected to the physics engine. Thus, inter-objects penetration could happen
in the game. Avoiding them is a feature foreseen for the next version of the SLGK.

1.1.2- User-driven actions parsing

Figure 8: Processing of a trainee-requested action shows the process of User Input to Action
Processing. As exposed in Figure 7, Unity3D performs the selection and notifies to SLGK which
object has been selected.

From the selection and using information on the object and of the current state of the user
avatar, SLGK computes the list of actions that match with the current information. From the
current state of the object and its states graph, only the actions that are out-edges of the state in
the graph are analysed. From them, depending on the grammatical structure of the action and
on if the trainee avatar holds or not an instrument, only grammatically valid actions are selected.
In order to select one of these possible actions, the reference task that contains a description of
the expected behaviour of the trainee, allows giving priority to the most probable ones. A priority
list is used to take the final decision.

Once the user requested action has been computed it is authorized or not, depending on the
current level of difficulty and the Reference Task. If the action is correct according to the
Reference Task, it is sent to the action processor. Otherwise, it can be sent or not depending on
if the level of difficulty allows to do incorrect or unnecessary actions. The current version of the
SLGK considers only two levels of authorization: all actions allowed, only actions related to the
current step of the Reference task.

Figure 8: Processing of a trainee-requested action

1.1.3- Reference Task Tracking

The Reference Task is implemented following the definition done in Deliverable D3.1: as a set
of three stages (introduction, development and conclusion) each composed by independent
tracks.

A track is a composition of actions to be done either by the trainee or by the trainer or by the
objects autonomously. Currently, SLGK implements three types of compositions:

 Sequential blocks of blocks:

Bs = Seq[B_1, B_2, B_3, …, B_n] such that Bs is done if first B_1 is done, then

B_2 and so on until B_n.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 13

WP3 – SeniorLudens platform design and implementation

 Parallel blocks of blocks:

Bp= Set_m([B_1, B_2, B_3,…, B_n]), meaning that Bp is done if m of the n

blocks of the set is done, no matter in which order.

 Conditional blocks of blocks:
Bc = (Boolean expression, B), meaning do B when the Boolean expression is fulfilled.
Currently, the Boolean expression can be defined only in term of:

- Object attribute value property
- Time value

Figure 9: Tracking of the reference task

During the game, the Reference Task Tracker tracks the trainee actions by comparing them to
the expected actions of the Reference Task. The action processor notifies the tracker of the
actions that have started and those that have ended. This way, the tracker follows the foreseen
storyboard of the game. It is able to program responsive trainer actions and to determine when
a step of the game has finished. This structure makes it possible to evaluate the trainee actions.
In the current version of the SLGK the tracker is implemented but not the validation in top of it.

1.1.4- Objects

SLGK provides two different ways to create objects, with visual representation and without, for
the first ones the Unity3D binding integrates the Unity3D objects with game kit.

The SLGK provides two different behaviours of objects one for characters and another for
objects, however if the new object requires a special behaviour the game kit can be extended to
include it.

The game kit doesn’t provide objects, it provides object behaviours, and the game kit SDK, a
warehouse is provided as reference.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 14

WP3 – SeniorLudens platform design and implementation

Figure 10 Some Objects provided as reference

1.1.5- Actions

When implementing an action in the SLGK three different approaches can be used: atomic
actions, composite actions, or alias action.

Atomic actions are self-contained, they do not need any other action to work, normally those
actions do only one thing and they have some options to customize their behaviour. The
customization of the action can be done when the action is assigned to an object.

If basic actions are self-contained, Composite Actions are defined using other actions (basic,
composite or aliases), the composition of those actions is defined either as a sequence or as a
set, where:

 Sequence: are defined as processing order sorted lists of actions: Ac = Seq[Ac_1,

Ac_2, Ac_3….Ac_n] such that in order to do Ac, first Ac_1 must be done, then Ac_2

and so on until Ac_n.

 Set: are defined as group of actions Ac = Set([Ac_1, Ac_2, Ac_3….Ac_n]),

meaning that in order to do Ac, the n actions of the set will start together and it will be

done once all finish.

Finally alias actions are used to rename and existing action, this happens when many different
actions in the real world are implemented exactly in the same way in the virtual world. From the
task point of view, they are treated as different actions, but the implementation is unique.

Figure 11: Mapping of different aliases actions to a unique SLGK action implementation

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 15

WP3 – SeniorLudens platform design and implementation

In some cases the level of customization of atomic action requires information not available
neither in the user input or the object relation with the action, this kind of actions (basic,
composite or alias) are called System Actions as they exist to be reused by other composite
actions.

1.1.5.1- Actions provided by the game kit

1.1.5.1.1- Atomic actions

 Play animation: reproduces an animation in an object.

 Play sound: reproduces a sound

 Stop sound: stops a sound if it’s playing.

 Touch: This is the most basic action, recognize with object is the clicked/touched by the
user.

 Pick: an object from the scene is removed from its position and placed in the hand of
the virtual avatar.

 Drop: it places the object in the hand of the virtual avatar in another object of the scene.

 Rotate: rotates an object in the scene

 Create of a new object instance: creates a new instance of an object definition available
on the world.

 Remove an object instance: removes an instance from the scene.

 Change the state of an object: changes the state of the object.

 Change the material of an object: changes the material used by an instance of an
object.

 Change the properties of an object: changes the value of a property of an object
(system action)

 Look At: changes the orientation in the scene to look at an object or point.

 Lock Camera / Unlock Camera: moves the camera to a given point and disables the
orientation, or brings the camera back to its original position and enables orientation

 Navigate: This action moves the users from their current location until they are near
enough to the new destination (normally an object of the scene).

 Stop Navigation: when a navigation action is running the user may notice they didn’t
want to go there, this action stops the movement.

 Put On, Put At: places an object somewhere in the scene.

 Write: the keystrokes are interpreted as text or in mobile devices the virtual keyboard is
throw.

 Notify: notifies an event to and object (system action)

 Quit: hides the current scene and displays if available the menu of the game.

1.1.5.1.2- Complex actions:

 Write on blackboard: changes the position of the camera and locks the orientation of the
camera to improve the experience when the user is writing in the blackboard.
Seq[Pick chalk , Lock Camera, Write]

 Create At Hand: creates a new instance of an object and places it in the virtual hand of
the user.
Seq[Create Object, Pick Object]

 Turn On/Turn Off: turns an object on or off, for example a treadmill.
Seq[Play Animation, Notify, Change State)

 Open, close: opens/closes an object, for example a door.
Seq[Play Animation, Change State)

 Enable Movie Mode: creates a new object in the scene that modifies the aspect of the
window to inform to the user that from now on they don’t have to interact with the game.
Set(Create, Lock Camera)

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 16

WP3 – SeniorLudens platform design and implementation

 Disable Movie Mode: removes the object created by enable movie mode and restores
the normal execution of the game.
Set(Remove, Unlock Camera)

1.1.6- SeniorLudens Game Kit SDK

In order to simplify and enhance the development process of games with the SLGK, we
provided a set of tools which packed with the SLGK form the SeniorLudens Gamekit SDK (from
now on SDK).

The SDK is designed thinking in its extension and portability, however to improve the
development workflow there is an extension of the game kit for Unity 3D (SDK for Unity3D),
together they provide:

1. Unity3D Editor Extension: this is an extension for the Unity 3D editor. It displays
specific information for the game kit objects in the Inspectors and custom UI to interact
with the SDK main features. It also provides a validator for the scene which detects
possible problems on the current scene like missing object information, duplicate object
identifier.

Figure 12 Details from the Unity 3D Editor Extension (in red the interface to the
SDK tools, in blue custom inspector information)

2. Warehouses: a game data files management pattern (see the following section
Warehouses).

3. Project examples: the sdk comes with two complete Unity3D projects to be used as
showcase and as learning tools during the development of new scenarios using the
SLGK.

4. HTTP SDK Server: this server provides an interface to interact with the tools of the sdk
and also it implements the calls from the SeniorLudens Platform required by the
gamekit, and can be used during the development process to check the world without
having to publish the game on the SeniorLudens platfrom.

5. Validator: the aim of this tool is to ensure the correctness of the descriptors, and the
warehouses. Currently only the validation of the descriptors using the corresponding
Xml Schema is provided, there is another validator bundled inside the Unity3D editor
which validates the correctness of the scenes.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 17

WP3 – SeniorLudens platform design and implementation

6. Descriptor Generator: offers an automatic way to generate the world descriptor xml file
needed in the Task Editor from the world data structure of the game is partially
implemented.

7. User manual and API docs: those are not tools but they are very useful resources
during the development of a game, they provide a reference of how to integrate the
game kit with your game and how to extend the functionalities of the SLGK designing
new behaviours and actions.

1.1.6.1- Warehouses

SLGK Warehouses are organized in a very specific way in order to foster the reuse of models,
materials and textures, to avoid redundancies and to provide means of creating easily
catalogues of resources. There is a general warehouse (SeniorLudens Warehouse) with
common resources, available to all users of the SeniorLudens platform, and a warehouse for
each world with the private objects of that world. The structure of a warehouse is depicted in
Figure 13.

There are three main folders: objects, materials and textures. The Materials and textures folders
contain the materials and textures that are shared by various objects of the warehouse.
Besides, each object can have particular materials and textures stored in their folder as
explained below.

The objects folder is structured into categories. Currently the definition of categories and the
classification of objects into these categories is free. In the SeniorLudens warehouse for
instance, there are categories such as food, kitchen (for all kitchen utensils), structure (windows
and doors) and furniture. Each category is substructured into subcategories, for instance food
into fruits, eggs, condiments. Finally, within each subcategory, there is a separate folder for
each object. When objects are composed of different parts (a door frame, a frame and a handle,
for instance), each part is considered as a different object and stored in a different folder unless
they act as a whole. The object’s folder contains the following files:

 definition.xml: the object definition file

 If the object has a visual object:
o subfolder Materials, with the materials that are specific to that object, not

shared by any other.
o subfolder textures, with the textures that are specific to that object, not shared

by any other.
o Graphical models of the default style, one for each state of the object that

requires a different one.
o The Unity prefab of every state (e.g.: mop.prefab)

 If the object has more than one style: - subfolder styles

 If the object has its own scripts (specific update or actions): - subfolder scripts and
within it, subfolder cs for the C# scripts.

http://movibio.lsi.upc.edu/sgcreb/seniorludens/docs/concepts/others.html#term-object-definition-file
http://movibio.lsi.upc.edu/sgcreb/seniorludens/docs/concepts/others.html#term-visual-object

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 18

WP3 – SeniorLudens platform design and implementation

Figure 13: Structure of SLGK warehouses

Graphical models can be in any of the formats supported by Unity. The textures and
materials of the different graphical models are in the local Materials and textures folders or
in the common warehouse Materials and textures folders. The styles folder contains the
files needed to represent different styles of an object. For each style, there is a different
folder that contains the graphical models and Unity prefabs and, eventually the Materials
and texture folder with the specific materials and textures of that style. Every style has all
the states of the object and the corresponding graphical models.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 19

WP3 – SeniorLudens platform design and implementation

1.1.7- Game Kit evaluation

In order to evaluate the SLGK usability and usefulness, three different use cases have been
foreseen:

- Some features are missing in a currently active SeniorLudens project. A SLGK
programmer is in charge of adding new objects to the scenario or modifying existing
ones. The profile of the SLGK requires a good knowledge of the toolkit and of Unity.
There are several subcases:

o Adding new objects or modifying existing ones by adding visual styles, states or
materials but not new actions: in this case, the world can be modified by adding
already existing objects in the SL warehouses, then the designer will not need
to program new features, just to set up and modify the composition of the world.

o Adding new actions either to existing objects or new objects. In this case, the
functionalities of the SLGK will need to be extended and the SLGK developer
will have to program the new actions.

- A new world must be created from scratch either for a new company or for a new use

case of an already existing client company.
- A new world must be created starting from an already existing Unity3D scenario, either

for a new company or for a new use case of an already existing client company.

With the evaluation we aim to know the features of the SLGK designed during the first prototype
needs that need to be improved and which features the developers will like to have on future
versions.

The questions can be grouped in four main subjects:

1. Concepts understating and installation process: questions 1-5, 8,9, 13
2. Creation of a World: questions 12,13, 14-16,
3. Evaluation of the world creation process 17-31
4. Documentation 32-34
5. Unity 3D Expertise 35

1.1.7.1- Evaluation results

After processing the questionnaires we analysed first the questions by group, first we noticed
that the developers understood how the SLGK works, and they also agree that in order to use it
the developer needs a high level of knowledge of Unity3D.

Figure 14 - Percentage of agreement

Looking for an answer for the low rating for the third group of questions, evaluation of the world
creation process, we checked the features requested by the developers. Most of the

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 20

WP3 – SeniorLudens platform design and implementation

developers requested some tools to automate and work in higher lever during the creation of
the worlds, they expected to have some graphical interface to design behaviours and don’t have
to create or modify xml files by hand or to don’t create the warehouse structure manually.

To evaluate the features we categorized them in four categories:

Figure 15 – Most requested group features

 Tools: this category includes the creation of tools to modify the warehouse or object
definitions.

 Planned features: the user requested features that will be available in future releases of
the game kit, where the most requested were: physics integration, multiple scenes.

 Documentation: provide more examples on the documentation, mostly related with the
descriptors and a quick start project instead of only examples.

 Others: this group contains other features like being more verbose with the errors.

1.1.7.2- Game kit Questionnaire

The questionnaire below encompasses these different use-cases. It was used during the
technical validation. It focuses at the documentation which is the main tool used by SLGK
programmers.

Answer the questions below.

How would you review the
following aspects of the game kit?

Totally
disagree

Disagree I don’t
know

Agree Totally
agree

General questions

I was able to install the project from
the SMC

I could access to the SeniorLudens
warehouse

I understand the concept of
warehouse

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 21

WP3 – SeniorLudens platform design and implementation

Warehouses are useful
SeniorLudens warehouse structure is
practical

I was able to create a new world from
scratch

I was able to migrate an already
existing Unity model in order to create
a new world

I was able to modify an existing world

I was able to create a new warehouse

I was able to create a new object and
add it to my new warehouse and to
my world

I was able to create a new style for an
object

I was able to create a new state for
an object

I was able to add existing actions of
the SeniorLudens GameKit such as
pick and drop and animate to a new
object

I was able to add a new action in the
SeniorLudens GameKit

I was able to create a message object
with the SeniorLudens GameKit

I was able to create a 2D panel with
the SeniorLudens GameKit

It was fast to create a simple
SeniorLudens GameKit world with an
avatar and already existing objects in
it

It was easy to create a simple
SeniorLudens GameKit world with an
avatar and already existing objects in
it

It was easy to add new objects to a
world

It was fast to add new objects to a
world

It was easy to modify objects of a
world

It was fast to modify objects of a
world

It was fast to add a message object

It was easy to add a message object

It was fast to add a 2D panel object

It was easy to add a 2D panel object

The currently existing actions in
SeniorLudens GameKit are useful

A lot of useful actions are missing in
the current version of SeniorLudens
GameKit

The current navigation paradigm in

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 22

WP3 – SeniorLudens platform design and implementation

SeniorLudens GameKit is suitable

The current pick action in
SeniorLudens GameKit is suitable

The current drop action in
SeniorLudens GameKit is suitable

I could work almost on my own
following the documentation

The documentation was useful

The creation of tickets on the issue
tracker is a good mechanism to report
errors and needs

You need to be an expert in Unity3D
to use the SeniorLudens GameKit

Enumerate up to five features that the current version of SeniorLudens GameKit does not
include yet and that you think that should be added in the first place in future versions

Description Reason

1

2

3

4

5

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 23

WP3 – SeniorLudens platform design and implementation

1.2- Scenario Editor

The Scenario Editor is designed as an extension of the game kit; this extension will provide new
actions and objects to configure the different scenes of a world. Those actions will be available
from an interface displayed over the 3D environment as it will allow the user to visualize the 3D
world at the same time.

Figure 16 - Scenario Editor Interface

The interface is composed by three main areas:

- Top bar: the top bar contains the actions modifiers, which will modify the way the user
interacts with the environment. It also provides the actions to save the scenario
configuration, hide the scenario editor and to leave the game.

- Side bar: the side bar will allow the user to filter the existing objects of the world using
categories.

- Bottom bar: display the objects available to place in the environment and the active
message.

1.2.1- Objects

The scenario editor will need objects that are not provided by the game kit, those objects
however will be mostly 2D. From the presented interface, the following objects are needed:

- Saver: when selected the object will save the scenario configuration and send it to the
SL platform.

- Quit: it will close the environment, and go to the game main menu.
- Object selector: creates a new object and puts it on the virtual hand of the user.
- Category selector: when selected the bottom bar will be updated to display only the

objects from a given category.
- Action modifier: when an action modifier is selected it will change the actions that the

user can do on the 3D environment.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 24

WP3 – SeniorLudens platform design and implementation

o Grab: when interacting with an object, if it can be grabbed, it will be placed on
the virtual hand of the user, if not it will not change.

o Rotate: the selected object will be rotated by 45 degrees.
o Change State: the selected object will be changed to another state, for

example an egg, for a broken egg.
o Change Style: if the selected object has more styles it will be changed for a

different style, for example: a chicken egg will be replaced by a quail egg.
o Interact: the action provided by the disambiguation mechanism (priority table)

will be used (this will be the default mode).
o Delete: if the user is near enough, the selected object will be removed from the

scene.
o Undo: the previous action of the user in the scene will be discarded.

1.2.2- Actions

The scenario editor will provide new actions for the game kit:

- Show Scenario Editor/ Hide scenario editor
- Save scenario Editor: this action will export the scenario configuration in the format

specified by the Scenario Configuration Descriptor and upload it to the SeniorLudens
Platform.

- Select object from Editor: when selected a new object will appear in the scene, it will
appear in the virtual hand of the user and then they will be able to place it on the
desired place.

- Undo: this action will undo the previous action of the user, only the actions that modify
the environment, like move, rotate, delete. *

- Change to next state: The selected object will change to another state*
- Change to next style: when an object is selected it will change to another of its styles.*
- Change interaction mode: this action will be customized for each object allowing

defining which actions will be available after its activation. After its execution the way
the user interacts with the environment will vary in function of which action where
available. For example for “Delete” only the actions navigate, touch and delete will be
available (plus the actions from the scenario editor).*

* Those actions will be implemented on the next prototype.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 25

WP3 – SeniorLudens platform design and implementation

1.3- Task Editor

The task editor is the tool used by the Game Designer to design the reference task for the
trainee and define the different roles of the characters.

The reference task is defined in terms of actions structured as sequential or parallel
compositions. Sequential compositions mean that the actions must be done one after the other,
and parallel compositions mean that a subset of the actions of the block must be done no matter
in which order. During the game play, all user interactions are interpreted as action queries.
The action queries are evaluated in comparison to the reference task to know whether they are
correct or not. If they are correct, they are done. Otherwise, they can be done and evaluated as
incorrect or forbidden to provide a free-of error learning process.

Figure 17 - Task Editor Interface

1.3.1- Implemented solution

This tool is designed to allow the users to define only the reference task, preventing them to do
most of the tedious and prone to errors activities such as deploying the full state diagram of all
possible user actions.

For this reasons Task Editor Tool makes use of Blockly
1
, a client-side JavaScript API for Visual

Programming Editor that allows users to write flows by plugging blocks together.

1.3.2- Main components

For this first release, Task editor (TE) is a web-application. In the next figure can be visualized a
common java stack that are considered as model for the web development.

The java stack also includes an application Server which is in charge of publishing the TE web
application developed which it covers the set of features. As application server is used Apache
Tomcat

1
 https://developers.google.com/blockly/

https://developers.google.com/blockly/

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 26

WP3 – SeniorLudens platform design and implementation

Figure 18 Task Editor Web platform - stack

1.3.3- Frontend

This element deployed over the TE Web platform provides the main frontend to the user.

It includes the principal graphical representations to the user, considered as the basic
components for user interaction:

 Manage custom blocks such as:

o Stage

o Track

o Parallel

o Sequential

o Action

These blocks utilize a graphical representation provided by Blockly. They represent the
basic elements used by users to create or modify the task flow.

 Create new task: this feature allows users to create a new task managing the set of

available custom blocks included in Task editor module.

 Modify existing task: this feature allows users to modify an existing task managing the

set of available custom blocks included in Task editor module.

 Load existing task: with this function the users can load and manage an existing task.

 Create new task descriptor: when the users have completed the task design, this

feature generates an xml file descriptor able to communicate to SeniorLudens platform

the interactions that should be done regarding the selected task.

 Visualization of World descriptor: this view utilizes the RESTful service provided

SeniorLudens Storage Server. It visualizes the current World descriptor used in the task

 Visualization of Scenario descriptor: this view utilizes the RESTful service provided

SeniorLudens Storage Server. It visualizes the current Scenario descriptor used in the

task

This representation is developed over the Java stack considered as reference in the project,
and consequently it is packed into a web archive that can be deployed directly over the
application server.

This module does not include a data repository, because this features is provided only by Senior
Ludens Storage Server.

For this reasons Task Editor manages data through RESTful calls as showing following figure:

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 27

WP3 – SeniorLudens platform design and implementation

Figure 19 Task Editor data communication - flow

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 28

WP3 – SeniorLudens platform design and implementation

2- SeniorLudens Platform

SeniorLudens platform is considered as the main element where all the modules included in the
project are integrated. Following this approach, it represents the main gateway with users,
catching all the user actions, with a twofold objective:

 To provide access to the different systems and elements in the system

 To organize and manage the content in SeniorLudens System.

The SeniorLudens platform works closely with two other modules which shape the whole
SeniorLudens System. These modules are the SeniorLudens Game Engine and SeniorLudens
Storage Server.

Figure 20 SeniorLudens system architecture

As can be seen in the figure above SeniorLudens Platform, SeniorLudens Game Engine and
SeniorLudens Storage Server coexist in the same environment: SeniorLudens Web Platform.
This environment is the web container where all the elements in the system are deployed to be
available to the final users.

If we dive inside the technical architecture presented in D1.2 Technical requirements, we can
distinguish how the elements are mixed between the available containers in a more detailed
level. It can be remarked that not all elements in SeniorLudens Game Engine are integrated in
SeniorLudens Web Platform, as they need to lay over SeniorLudens Game Kit that is the
container related with the Serious Games themselves.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 29

WP3 – SeniorLudens platform design and implementation

Figure 21 Technical architecture

In this document has been previously detailed the SeniorLudens Game Engine, so we will cover
in this section the SeniorLudens Platform and SeniorLudens Storage Server.

2.1- Storage Server

The SeniorLudens Storage server is the element where all the data available in the platform is
stored. The information can be catalogued in three different schemas depending on the context
in which they belong:

 SeniorLudens Platform Schema: Corresponds with the Platform data.

 SeniorLudens Descriptors Schema: It stores the descriptors information used in
SeniorLudens Game Engine.

 SeniorLudens Results Schema: It agglutinates the information collected from the
users during the playing process. It has not been developed in the current release, so it
will not be covered in the current version of the document.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 30

WP3 – SeniorLudens platform design and implementation

2.1.1- Implementation

The storage server has a twofold implementation regarding the concept of the system, as it
includes storage elements and a server to provide the connectivity with the clients to
interchange the store information.

The storing subelement is conceived using a PostgreSQL database as the main storage base.
The selection of this database was based on the licensing terms which apply to it and because
of the direct integration with PaaS solution where the final solution is deployed.

The server side of the Storage Server is based on the java default stack defined in the project.
Being the server intended only to provide mechanisms to access data, as it is not needed to
build web interfaces. This reason motivates the utilization of Java2EE in the main core and
Spring to provide the mechanisms manage the server and the connections with the clients. It is
also used Hibernate to manage the connections with the databases.

There are defined two interconnection procedures to attend the users’ calls depending on the
specific internal client which is performing the call.

 Rest API: This is the default connection method. By using it, there are provided a
transparent api methods that can be queried to consume the stored data. It is used to
retrieve the data stored in SeniorLudens descriptor schema and SeniorLudens Results
schema.

 JDBC connection: This link is used by the systems which want to connect directly with
the data stores. It requires guaranteeing the integrity of the queries executed in order to
maintain the data consistency in the store. It is used by SeniorLudens Platform schema
because it is needed to satisfy the time constraints on the responses to the user
interactions.

2.1.1.1- SeniorLudens Platform schema

This schema is used to store all the information managed by the SeniorLudens Platform, so it
includes the information about the users, organizations, games, game versions, etc.

This database is accessed through a JDBC connector in order to provide all the information
directly from the storage to the SeniorLudens Platform.

The next figure shows the class diagram involved in the SeniorLudens Platform to deal with the
data stored in the schema. This model correlates uniquely with the entity-relationship design of
the schema.

Spring + Hibernate

Java2EE

Figure 22 Storage Server stack

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 31

WP3 – SeniorLudens platform design and implementation

Figure 23 Data model class diagram

The elements involved in the model are the following:

 Game: This table stores the information about the game in a general level. Only
information not intended to be changed among the different game versions is included
in this table.

 Game Details: The game details corresponds with the different game versions which a
Serious Game may have. The last version should be the most recent in the game
Catalogue.

 Game Category: This table stores the game categories available in the system. All
games in the catalog must be fitted in one of these categories.

 Game Status: The table provides the different possible status in which a game can be.
It contemplates options to publish, unpublish, review, etc.

 ModelUser: This table provides the model for the users in the system. It includes all the
personal data needed to identify uniquely the users in the system. The password is not
stored in plain text, as it is required to be coded to guarantee a minimum level of
security under unauthorized access to database.

 Organization Staff: This table organizes the different roles and users which comprises
the organizations staff.

 Organization: These are the organizations included in the system. This table includes
all the information required to identify uniquely an organization in the system.

 Role: This table stores the different available roles that a user may have in the system.
The link between roles and users is done in the table Organization Staff.

 Role Permission: This table is in charge of tying roles and permissions together. By
defining these connections, the platform knows which roles have access to individual
actions.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 32

WP3 – SeniorLudens platform design and implementation

 Permission: This table defines the individual actions referred to the platform. It is
considered as the minimum definition that can be used to define the operations that can
be performed in the SeniorLudens Platform.

2.1.1.2- SeniorLudens descriptors schema

This database is the place where all data related with the descriptor files used in SeniorLudens
Game Engine are stored. These descriptors define uniquely a Serious Game in the system and
they are needed to execute the game. Because of this, it is highly important to provide secured
mechanisms to guarantee the data integrity as well as standard mechanisms to access the
data.

In order to compel the integrity on the data, this database is only accessible through REST
APIs, which guarantees the communication based on a defined handshake and error returning
codes. This mechanism ensures the validity on the data and the knowledge about the state of
the communication in both sides involved in it.

The data integrity is accomplished by checking all the information stored together with the new
descriptor files coming from the clients, with the specific XML schemas which models the
descriptors (each descriptor has its own schema which models it). By passing successfully
through the schema check, the descriptor is able to be stored or sent to the client. If the
descriptor does not pass the check, then it is returned a negotiated error code, to let the client
know about the existing problem in the server. This procedure ensures the data consistency,
avoiding corruption on the descriptors and hence over the Serious Games.

The database schema responds to the class model shown in the figure below:

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 33

WP3 – SeniorLudens platform design and implementation

Figure 24 Data model descriptors class diagram

The class diagram shown in this figure corresponds with the model defined in the SeniorLudens
Storage Server, which correlates directly with the entity-relationship design used in the schema.

The main elements in the model are the following:

 WorldList: This table stores the world descriptors. It also connects the world descriptor
files with the owner organization in order to provide traceability on the worlds designed
by the owner entities. This table stores audit data to track the changes on the data as
well as the users involved in the operation.

 ScenarioList: This table stores the scenario descriptors. It has direct connection with
the WorldList table as it builds over world hierarchically. It includes the organization
ownership information and the audit information as well.

 TaskList: The table stores the task descriptors. It has direct connection with the
ScenarioList because the descriptor has complete meaning only under the selection of
a scenario descriptor. In the same way as the other tables, it includes the information
about the organizations and data for auditing purposes.

 TrainingPlanList: This table stores the information about the training plan descriptors.
Following the same approach of the other tables, it needs the Task Descriptor to have
complete meaning. It provides information about the organization and for auditing
purposes as well.

It is expected to update this model in the next releases to replicate the descriptor files in third
party storage solutions, so it is planned to update the model in the next development iterations.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 34

WP3 – SeniorLudens platform design and implementation

As was commented before, the communication method defined for this database schema is the
REST API. It is defined a set of methods to retrieve the information stored based on the different
context on which they apply. The conjunction of these methods and the XML schemas used for
validate the data consistency on the descriptors, shapes the SeniorLudens Storage Server for
serving the descriptors data.

Regarding the world descriptors have been defined the following methods:

Endpoint Method Parameters Description

https://seniorludens-
pre.herokuapp.com/rest/api/storage/w
orld

GET Long: id (the world
id)

It retrieves from
storage server the
requested world
descriptor.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/w
orld

POST world: String (The
world xml data)

It stores a new
world descriptor
into storage
server.

organization_id:
Long (The owner
organization)

user_id: Long
(responsible user)

name: String
(descriptor name)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/w
orld/update

POST world: String (The
world xml data)

It updates the
world descriptor in
storage server. organization_id:

Long (The owner
organization)
user_id: Long
(responsible user)
name: String
(descriptor name)
id: Long (the
descriptor id)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/w
orld/organization

GET organization_id:
Long (The owner
organization)

It gets the
descriptors owned
by the
organization id.

Table 1 REST methods for world descriptors

The scenario descriptors stored in the server are accessed by the following methods:

Endpoint Method Parameters Description

https://seniorludens-
pre.herokuapp.com/rest/api/storage/sc
enario

GET Long: id (the
scenario id)

It retrieves from
storage server the
requested
scenario
descriptor.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/sc

POST scene: String (The
scene xml data)

It stores a new
scenario

https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/world/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 35

WP3 – SeniorLudens platform design and implementation

enario organization_id:
Long (The owner
organization)

descriptor into
storage server.

user_id: Long
(responsible user)

name: String
(descriptor name)
world_id: Long (The
world id from where it
hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/sc
enario/update

POST scene: String (The
scenario xml data)

It updates the
scenario
descriptor in
storage server.

organization_id:
Long (The owner
organization)
user_id: Long
(responsible user)
name: String
(descriptor name)
id: Long (the
descriptor id)
world_id: Long (The
world id from where it
hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/sc
enario/organization

GET organization_id:
Long (The owner
organization)

It gets the
descriptors owned
by the
organization id.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/sc
enario/organization/{world_id}/

GET world_id: Long
(PathParam)(the
parent world id)

It gets the set of
scenario
descriptors
hanging from
world descriptor
id.

Table 2 REST methods for scenario descriptors

The task descriptors are available using the following methods:

Endpoint Method Parameters Description

https://seniorludens-
pre.herokuapp.com/rest/api/storage/ta
sk

GET Long: id (the task id) It retrieves from
storage server the
requested task
descriptor.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/ta
sk

POST task: String (The task
xml data)

It stores a new
task descriptor
into storage
server.

organization_id:
Long (The owner
organization)

user_id: Long
(responsible user)

https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization/%7Bworld_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization/%7Bworld_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/scenario/organization/%7Bworld_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/task
https://seniorludens-pre.herokuapp.com/rest/api/storage/task
https://seniorludens-pre.herokuapp.com/rest/api/storage/task
https://seniorludens-pre.herokuapp.com/rest/api/storage/task
https://seniorludens-pre.herokuapp.com/rest/api/storage/task
https://seniorludens-pre.herokuapp.com/rest/api/storage/task

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 36

WP3 – SeniorLudens platform design and implementation

name: String
(descriptor name)
scene_id: Long (The
scene id from where
it hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/ta
sk/update

POST task: String (The task
xml data)

It updates the
task descriptor in
storage server. organization_id:

Long (The owner
organization)
user_id: Long
(responsible user)
name: String
(descriptor name)
id: Long (the
descriptor id)
scene_id: Long (The
scene id from where
it hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/ta
sk/organization

GET organization_id:
Long (The owner
organization)

It gets the
descriptors owned
by the
organization id.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/ta
sk/organization/{scene_id}/

GET scene_id: Long
(PathParam)(the
parent scenario id)

It gets the set of
task descriptors
hanging from
scene descriptor
id.

Table 3 REST methods for task descriptors

The training plan descriptors can be queried using the following methods.

Endpoint Method Parameters Description

https://seniorludens-
pre.herokuapp.com/rest/api/storage/tr
ainingplan

GET Long: id (the training
plan id)

It retrieves from
storage server the
requested task
descriptor.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/tr
ainingplan

POST training: String (The
training plan xml
data)

It stores a new
training plan
descriptor into
storage server. organization_id:

Long (The owner
organization)

user_id: Long
(responsible user)

name: String
(descriptor name)
task_id: Long (The
task id from where it
hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/tr

POST training: String (The
training plan xml

It updates the
training plan

https://seniorludens-pre.herokuapp.com/rest/api/storage/task/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization/%7Bscene_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization/%7Bscene_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/task/organization/%7Bscene_id%7D/
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/update
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/update

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 37

WP3 – SeniorLudens platform design and implementation

ainingplan/update data) descriptor in
storage server. organization_id:

Long (The owner
organization)
user_id: Long
(responsible user)
name: String
(descriptor name)
id: Long (the
descriptor id)
task_id: Long (The
task id from where it
hangs)

https://seniorludens-
pre.herokuapp.com/rest/api/storage/tr
ainingplan/organization

GET organization_id:
Long (The owner
organization)

It gets the
descriptors owned
by the
organization id.

https://seniorludens-
pre.herokuapp.com/rest/api/storage/tr
ainingplan/organization/{task_id}/

GET task_id: Long
(PathParam)(the
parent task id)

It gets the set of
training plan
descriptors
hanging from
task descriptor id.

Table 4 REST methods for training plan descriptors

It is important to remark that all the methods listed above are constructed by using the
SeniorLudens staging environment URL as root (http://seniorludens-pre.herokuapp.com). The
server can be deployed to any server, so the only change in the endpoints methods will consist
in change the root of the shown methods.

All the methods listed on the previous tables will be updated in the next development phases in
order to adapt them to the necessities of the next deployments of the different elements on
SeniorLudens Game Kit.

2.2- SeniorLudens Platform

The SeniorLudens Platform comprises the web interface used in the project to interact with the
users. It also agglutinates the access to all the elements in SeniorLudens System, being
considered as the common entrance point between the users and the different tools integrated
in the system.

It is deployed in a web container that is used by all the web servers and web applications. It has
been done in this way due to the PaaS deployment used in the environments. However all the
web apps can be splitted to be deployed in different containers and host servers in order to
scale the system to the user load or simply to match the user experience based on QoS
agreements.

2.2.1- Implementation

The platform has been built using the reference stack defined in the project. The bottom level is
J2EE in which all the rest of the stack levels are piled up. The reference layer is constructed
over Spring and Maven. Using this architecture, is pursued to offer a scalable project

https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization/%7btask_id%7d/
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization/%7btask_id%7d/
https://seniorludens-pre.herokuapp.com/rest/api/storage/trainingplan/organization/%7btask_id%7d/
http://seniorludens-pre.herokuapp.com/

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 38

WP3 – SeniorLudens platform design and implementation

management, and adaptable to different environments what is valuable when the development
is deployed in development, staging or production systems.

Going into detail in the Spring module, it uses Spring Boot as reference to provide the
deployment contexts on the web container. To respond to the views it is used Spring MVC
which gives to the system the scalability on view adaptation and rest method development. The
security in the system is provided through Spring Security, which facilitates the security methods
during the user’s sessions and login views.

The project is deployed over Tomcat 8.0 web container, in which it is executed the platform web
application. The views are composed by Apache Tiles, taking advantage of the integration of
different JSP pages to shape the final view. It is really handy because it maximizes the reuse of
components inside the project, reducing consequently the redundancy in project sources. The
final presentation layer is built over HTML, JavaScript, and CSS3. This layer is constructed
using Bootstrap solution in order to ease the responsive web integration. It makes the final
result more adequate and comparable with the current solutions deployed in the web.

Figure 25 SeniorLudens Platform stack

Using this stack as development reference, the platform aims to get a minimalistic approach in
its visualization, stressing by the use of vivid colours to guide the user to the desired actions.
Besides the views have been organized using the same schema: main actions are located in
the main part of the screen; other actions and tools available in the system on the side menu;
and additional functions to change the status of the platform on the top menu.

It has been considered a responsive design in all the views defined in the platform. It ensures
the correct visualization in all devices: computers (considered as the main device which is going
to access the platform), tablets and smartphones. By using the responsive design, all the
elements in the view are laid out to compose a new arranged view in which the visibility and
accessibility are maximized depending on the new screen resolution.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 39

WP3 – SeniorLudens platform design and implementation

Figure 26 SeniorLudens platform

The development has followed a Model-View-Controller approach, in which the view is provided
by the JSP and Apache Tiles, the controllers that are in charge of responding the user’s
requests, done over the views, and the Model that corresponds in the case of the Platform to
the model defined in Figure 23. This model correlates directly with the model used in the
definition of the database schema.

From this point we are going to dive in detail on the specific construction of the system through
the different layers and classes. All the design is based on interfaces and inversion of control
mechanisms (IoC), with the objective of create a scalable and transparent between layers
infrastructure.

The controller’s class diagram can be visualized in the next figure. The controllers are supported
by the service’s classes in order to organize and distribute the access to the dao classes. Using
this approach: views talk with controllers; controllers talk with views and services; services
provide the business logic and access to the dao classes; and dao classes talk with database.

It can be distinguished the following main elements:

 Register Controller: This controller is in charge of the register calls attached to the
register view. It assists as well during the new user creation procedure. It is supported
by the User Service, to update the status of the new user in the system.

 Login Controller: This controller controls the login features and views in the system. It
is strictly connected with the system security to guarantee the data interchange in the
user session. It has direct connection with the Organization Service to retrieve the user
organizations, Game Service to obtain the games in each one of the organizations in
where the user has an admin role access and User Service from where the controller
takes the information about the user model object.

 User Controller: This controller manages all the connections to update user profile, as
well as to update the user role in the organizations. To do so, it has direct connections
with UserService, to access the users’ data; Organization Service, to get the information
about the organizations; and RoleService, to retrieve the information about the user
roles in the system.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 40

WP3 – SeniorLudens platform design and implementation

 Game Controller: The game controller is in charge of managing all the connections
with the views related with game catalogue management. It has direct access with
Game Service to query about the game model objects in the system; Organization
Service to get the information about the organizations which own the games in the
system; and User Service, to obtain the information about the users who were involved
in the game lifecycle.

 Organization Profile Controller: This controller manages all the views related with the
individual organization profile. It connects with the Organization Service to obtain the
information about the organizations registered in the system.

Figure 27 Class Diagram – Controllers & Services

As was aforementioned, the bottom layer in the project class structure corresponds with the
DAO classes which are in control of the database access. Any consultation/update/delete
operation on database is done only by using the DAO objects. This uniqueness in the access
mechanism guarantees the independence of the data and the stability in data accesses, as all
sources of consultations use the same data access methods.

AAL-2013-6-039

SeniorLudens [Project logo]

Figure 28 Dao Class Diagram

AAL-2013-6-039

SeniorLudens [Project logo]

As can be seen in the class diagram, all DAO classes extend from GenericDaoImpl, which
encapsulates and provides the basic methods for data select/update/delete (CRUD methods).
By extending this class, all DAO classes use the same connectors with the data source. By
combining these methods, all DAO classes can create extended methods regarded to each
entity.

The class diagram is shown in the figure above. In it can be observed that there is a direct
connection between data model and DAO classes, by which a model class is mapped by a DAO
class which encapsulates all the connections. Can be highlighted the following main classes:

 Game DAO: It is connected with Game model class. It is in control of the game
information in database, so it provides the methods to interact with the Game model.

 GameDetails DAO: It is connected with Game Details model class. It provides the
methods to query about the different version of the games.

 GameCategory DAO: It connects with Game Category model class. It provides access
to the game categories in database. This content is almost static because the
categories are unalterable during the platform execution.

 GameStatus DAO: It is connected with the Game Status model class. It gets access to
the different states in which a game can be in the platform. The content of this DB is
static during the platform execution.

 User DAO: This class connects with the User Model class. Besides it provides access
to the basic methods to operate with the user fields.

 Organization DAO: It connects with Organization model class, offering access to the
information contained in the organizations profile.

 OrganizationStaff DAO: It connects with the Organization Staff model which is in
charge of structuring the user roles inside the organizations. This class presents the
methods to access this information.

 RolePermission DAO: It connects with RolePermission model, which is oriented to join
all the different basic actions over the platform into Roles. These roles can be
understood as sets of actions.

 Permission DAO: It is the direct access class to Permission Model. These data is
almost static in the project, as it defines all the basic actions that can be performed over
the platform.

2.3- Evaluation

The evaluation of the platform is carried out by matching the current development with the
technical requirements defined in the project. The functional requirements are going to be
tested and described in D4.2 Pilots evaluation results.

The platform and storage server have been deployed in Heroku
2
 PaaS solution following the

definition of the technical requirements done in the deliverable D1.2. The decision of this
provider has been taken based on the conditions, pricing plans and capabilities offered by the
different competitors in the market. After this evaluation process, it was considered Heroku as
the best option to deploy the different releases of SeniorLudens project.

This decision is also compatible with the necessity of creating different environments depending
on the stage in which the project and its releases are: development stage, staging stage and
production stage. Depending on the different stage of the Continuous Delivery in which the
current versions are, there will be selected the suitable environment. For the moment of the
redaction of the present document, the two main environments for the platform in the
development phase have been created: development and staging. The current release is in fact

2
 www.heroku.com

http://www.heroku.com/

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 43

WP3 – SeniorLudens platform design and implementation

deployed in the staging environment, and it is being updated continuously with new updates and
releases taking the benefits from continuous delivery approach.

The present status of the platform and storage server includes all the elements commented in
the document. It is under development after the first iteration in the development and the next
iteration will cover the extension of the existing features and will go ahead in the integration of
the different systems (especially SL Game Engine) and the tools in the platform.

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 44

WP3 – SeniorLudens platform design and implementation

Figures and tables

Figure 1- SeniorLudens Game Engine Components .. 5

Figure 2 - Example on an indoor SeniorLudens scene. This scene was designed during the first
phases of development, as a proof-of-concept of the SLGK. ... 6

Figure 3 - Example of an outdoor environment. In this case it is a scene of the case study
GrowYourProject. .. 7

Figure 4 - An example of an interface object provided by SLGK. It is the preliminary interface
used in the Scenario Editor Game. The interface is composed of four panels (surrounded in
red). SLGK provides actions to show and hide them and modify the text of the buttons. The
interface also contains a message box currently hidden by the objects menu at the bottom part
of the screen. ... 8

Figure 5: The three SeniorLudens games main elements: the World, the Scene Configuration
built from the Scenario description file and the Reference Task built from the task description
file. ... 9

Figure 6: Actions that may occur at each loop of the game: trainee-driven actions, objects-driven
action and trainer-driven action. .. 10

Figure 7: The two-levels of actions processing in SLGK. In blue the abstract layer and in orange
the game-engine level. .. 11

Figure 8: Processing of a trainee-requested action .. 12

Figure 9: Tracking of the reference task ... 13

Figure 10 Some Objects provided as reference .. 14

Figure 11: Mapping of different aliases actions to a unique SLGK action implementation 14

Figure 12 Details from the Unity 3D Editor Extension (in red the interface to the SDK tools, in
blue custom inspector information) ... 16

Figure 13: Structure of SLGK warehouses ... 18

Figure 14 - Percentage of agreement ... 19

Figure 15 – Most requested group features .. 20

Figure 16 - Scenario Editor Interface .. 23

Figure 17 - Task Editor Interface ... 25

Figure 18 Task Editor Web platform - stack .. 26

Figure 19 Task Editor data communication - flow ... 27

Figure 20 SeniorLudens system architecture .. 28

Figure 21 Technical architecture ... 29

Figure 22 Storage Server stack... 30

Figure 23 Data model class diagram... 31

Figure 24 Data model descriptors class diagram .. 33

Figure 26 SeniorLudens Platform stack .. 38

Figure 25 SeniorLudens platform .. 39

Figure 27 Class Diagram – Controllers & Services ... 40

Figure 28 Dao Class Diagram ... 41

Table 1 REST methods for world descriptors ... 34

Table 2 REST methods for scenario descriptors .. 35

Table 3 REST methods for task descriptors ... 36

Table 4 REST methods for training plan descriptors .. 37

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 45

WP3 – SeniorLudens platform design and implementation

AAL-2013-6-039

SeniorLudens [Project logo]

Date

03/2015

D3.5 - SeniorLudens serious game engine and platform technical evaluation
report Page 46

WP3 – SeniorLudens platform design and implementation

Acronyms

Acronym Explanation

SL SeniorLudens

SLGK SeniorLudens Game Kit

SDK Software Development Kit

LMB Left Mouse Button

RMB Right Mouse Button

QoS Quality of Service

DAO Data Access Object

IoC Inversion of Control

CRUD Create, Read, Update, Delete

DB Database

