

2

3

Knowledge Base prototype

Ambient Assisted Living Joint Programme project no. AAL-2013-6-060

Deliverable 3.4, version 1.0

Lead author: Mitja Luštrek, Jožef Stefan Institute

Co-authors: Božidara Cvetković, Jožef Stefan Institute

 Robert Szeklicki, Poznań University of Technology

 Placer Vieco, SGS Tecnos SA

 Martin Gjoreski, Jožef Stefan Institute

4

© Fit4Work Project Consortium

This document is made publicly available free of charge to all interested readers, however it cannot be

reproduced or copied without the explicit permission of the Fit4Work consortium or AAL Association.

Published on 25th of April, 2016

The Fit4Work project is co-financed though the AAL Joint Programme by:

- European Commission

- National Centre for Research and Development, Poland

- Ministry of Industry, Energy and Tourism, Spain

- Executive Agency for Higher Education, Research Development and Innovation Funding, Romania

- Ministry of Higher Education, Science and Technology, Slovenia

- The Netherlands Organisation for Health Research and Development (ZonMW), The Netherlands

5

Table of contents
1. Introduction ... 6

2. Physical activity knowledge base .. 7

3. Functional Fitness Exercises Knowledge Base ... 8

4. Stress Relief Knowledge Base .. 9

4.1. Breathing exercises .. 9

4.2. Progressive muscle relaxation exercises ... 10

5. Ambient Conditions Monitoring Knowledge Base .. 12

5.1. Classes and individuals .. 12

5.2. Object-properties and data-properties ... 13

5.3. SWRL rules ... 15

5.3.1. State rules .. 15

5.3.2. Action rules .. 16

5.3.3. Property of parameters rules .. 16

5.3.4. Influence rules (increase/decrease and influence strongly/weakly) 18

5.4. Putting all pieces together and querying with SPARQL-DL ... 19

6. Discussion .. 21

7. Bibliography ... 22

6

1. Introduction
The Fit4Work knowledge base includes knowledge about the physical activity, the stress relief exercises,

functional fitness exercises and requirements for better quality of the environment and actions which

should be taken to keep the quality environment.

The physical activity knowledge base includes knowledge about most common activities and requirements

on amount of daily and weekly physical activity. The knowledge base on stress relief exercises is composed

of list of exercises. The knowledge about the environment quality is more complex, thus implemented and

encoded into the ontology.

The knowledge base will be constantly updated and upgraded with additional information and exercises.

7

2. Physical activity knowledge base
Knowledge about physical activity is collected from two sources. The knowledge about physical activity

used in the Fit4Work system is composed of knowledge about the most common activities in elderly and

recommendations about the amount of physical activities per day and week.

The most common activities were retrieved from the questioner presented in deliverable on user

requirements. The knowledge about the most common activities were used to compose a scenario of

activities to be used for data collection. In this deliverable we present a summary of the activities and

emphasise which were suitable to include in the scenario.

The most common activities are:

 Walking (23%) – most common in Spain (37%) – included into the scenario

 Gardening (18%) - most common in Romania (49%) – included into the scenario

 Cycling (17%) - most common in Netherlands (28%) –included into the scenario

 Gym/fitness (7%) – most common in Spain (16%) – included into the scenario as Fit4Work exercise

 Swimming (6%) – not feasible to include into the scenario (no water resistant sensors)

 Hiking (5%) - most common in Romania (15%) - it was included into the scenario as walking (uphill)

 Running (2%) - included into the scenario

 Sports (Football/volleyball) (2%) – not feasible to include into the scenario (multiple people needed)

 Nordic walking (2%) – included into the scenario

 Pilates (2%) – not explicitly included into the scenario

 Skiing (2%) – not feasible to include into the scenario

 Tennis (2%) – not included into the scenario

 Dancing (1%) – not explicitly included into the scenario

 Yoga (1%) – not explicitly included into the scenario

Results about most common activities was used to build a scenario to be used for data collection of activity

and energy expenditure of the elderly presented in Section 2.1.

The recommendations are divided into daily recommendations and weekly recommendations. Daily

recommendations include amount of active calories burned per day, at least 10 minutes of continuous

moderate activity and minute of active movement per hour for at least 12 hours per day. Weekly

recommendations are adapted from the WHO recommendations which state that person should be

engaged into moderate-intensity physical activity for at least 150 minutes per week or vigorous-intensity

physical activity for at least 75 minutes per week or comparable combination of both. More about the

recommendations is reported in Deliverable 3.3.1/3.3.2.

2.1. Activity monitoring scenario
Data collection was done in the laboratory environment at the Faculty of Physical Education, Sport and

Rehabilitation in Poznan University of Physical Education, Poland, under the supervision of physiology and

sports experts. The dataset contains data of ten healthy volunteers: six male and four female, aged from 51

to 66 (59 ± 4.6) with different fitness levels, BMI from 22 to 29 (25.8 ± 2.3). All volunteers refrained from

8

eating and drinking (except for water) in the 12 h prior the experiment. The scenario is presented in Table

2.1.

Table 2.1 Activity monitoring scenario

 Activities Time Avg

MET

Lying Lying left side 1′ 1.2

 Lying front 1′ 1.5

 Lying right side 1′ 1.4

 Lying back 7′ 1.2

Basic activities Walking slowly 10′′ 3.5

 Sitting down at the desk

 Sitting still 4′ 1.2

 Sitting doing light activities (reading, writing, leafing through a book, using computer,

knitting, Rubik’s cube, playing cards)

4′ 1.2

 Standing up

 Walking slowly 10′′ 3.5

 Standing still 4′ 1.3

 Standing talking & gesticulating 2′ 1.7

 Walking slowly 10′′ 3.5

 Standing washing hands 2′ 2.3

 Walking slowly 10′′ 3.5

 Home chores (cooking, serving food, washing dishes, sweeping floor, washing

windows)

6′ 2.5

Eating Eating with cutlery 2′ 1.9

 Eating with hands 2′ 1.5

Gardening Planting seedlings, digging, raking, weeding 6′ 2.2

 Rest 3′

Walking Walking slowly (4 km/h) 4′ 3.5

 Walking normally (6 km/h) 4′ 4.2

 Rest 3′

Nordic walking Walking normally (6 km/h) 6′ 4.5

 Rest 3′

Walking carrying a

burden

Walking slowly (4 km/h) 6′ 4.2

 Rest 3′

Walking uphill Walking slowly (3 km/h) 6′ 4.4

 Rest 3′

Running Running normally (8 km/h) 6′ 7.1

 Rest 3′

Stationary cycling Cycling lightly (60W) 6′ 4.2

 Cycling normally (100W) 6′ 5.0

 Rest 3′

9

3. Stress Relief Knowledge Base
The Fit4Work system will in addition to measuring and monitoring stress provide the user with the stress

relief exercises which are a part of the stress relief knowledge base. Currently we have two types of

exercises: the breathing exercises and the progressive muscle relaxation exercises. Each exercise is

accompanied with the visual representation.

We will update the knowledge base with additional exercises in the future work.

3.1. Breathing exercises
The breathing exercises are composed of the first phase - training and the second phase - performing

exercises. While training, the user should be in the comfortable position and comfortable environment

without any distractive stimuli. The user should train all six breathing exercises up to the point where they

can be performed anytime and anywhere. When the user masters the exercises he/she selects the exercise

which suits him/her best. The exercises are presented in Table 3.1.

Table 3.1. List of current breathing exercise for stress relief which are in the knowledge base.

Breathing exercise Instruction Duration Repetition

First exercise

Closed eyes

3 minutes 4 times
Hand under navel

Conduct the air to the lower part of abdomen
Breathing

Imagine blowing up a balloon.

Second exercise

Closed eyes

3 minutes 4 times

One hand under navel, second on the stomach

Conduct the air to the lower part of abdomen
Breathing

Conduct the air to the stomach

Imagine blowing up a balloon.

Third exercise

Closed eyes

3 minutes 4 times

Conduct the air to the lower part of abdomen

Breathing

Exhale

Conduct the air to the stomach

Exhale

Conduct the air to the chest

Exhale

Fourth exercise

Closed eyes

3 minutes 4 times

Conduct the air to the lower part of abdomen

Breathing

Exhale with sonorous sound

Conduct the air to the stomach

Exhale with sonorous sound

Conduct the air to the chest

Exhale with sonorous sound

Fifth exercise

Closed eyes

3 minutes 4 times Breathing normally
Breathing

Conduct the air to the lower part of abdomen

10

Exhale

Conduct the air to the stomach

Exhale

Conduct the air to the chest

Exhale

In the future work we will detect which exercise is the best for the current user in the first stage from the

answers retrieved from the questioner and in the second from the response retrieved from the biosensors.

The most suitable exercise, which is the one that has the best impact on the stress relief will be

recommended to the user.

3.2. Progressive muscle relaxation exercises
The progressive muscle relaxation exercises are performed for 10 to 15 minutes. The user squeezes the

muscle for ten seconds and then slowly relaxes it. The exercise is composed of three phases: training phase,

mental review phase and mental relaxation phase.

In the training phase, the user performs the progressive muscle relaxation exercises. The user chooses the

exercise and does multiple exercises related to different body parts in predefined order for three times. All

exercise are performed sitting down. The exercises are presented in Table 3.2.

Table 3.2. Progressive muscle relaxation exercises.

Exercise Exercise order Instruction

Face, neck and
shoulders training

Forehead Wrinkle the forehead for ten seconds and relax

Eyes Open eyes widely for ten seconds and close slowly

Nose Wrinkle the nose for ten seconds and relax

Mouth Smile widely for ten seconds and relax slowly

Tongue Press tongue against palate for ten seconds and relax slowly

Jaw Clench teeth strongly for ten seconds and relax slowly

Lips Wrinkle lips (kiss) for ten seconds and relax slowly

Neck
Flex neck forward for five seconds, get into initial position and flex
neck backwards for five seconds, get into initial position

Shoulders Raise shoulders for ten seconds and relax slowly

Hands and arms
training

Fist and arm
Close fist and tighten it for ten seconds. The tension is in the arm,
forehand and hand and relax slowly. Repeat with other arm.

Legs training Leg
Stretch leg and tighten it by pointing toes upwards for ten
seconds. The tension is in the gluteus, thigh, knee, calf and foot.
Repeat with the other leg.

Thorax, abdomen
and lumbar training

Back
Arms are put across the chest in form of a cross. The elbows are
pushed backwards for ten seconds. The tension is in the lower
part of back and shoulders

Thorax
Inhale and keep air in lungs for ten seconds. The tension is in
chest, exhale slowly

Stomach Tighten stomach for ten seconds and relax slowly

Waist Tighten gluteus and thighs for ten seconds and relax

11

In the future work additional exercises might be added into the knowledge base.

12

4. Ambient Conditions Knowledge Base
Ambient conditions knowledge base contains the knowledge about the parameters which are monitored,

quality interval and actions which impact the parameter values. The knowledge base is encoded into the

ontology.

The ontology is encoded with the OWL (Ontology web language) language, which is computer readable

language to encode and express ontologies. Ontology is a set of axioms that defines object relations and

relations between object and their properties. OWL can be combined with a reasoner, which (i) insures the

consistency of all relations in knowledge representation and (ii) allows us to infer from implicit to explicit

knowledge (e.g. sister of my father is my aunt). The first enables us to validate the ontology and second to

infer current state of the ontology and properly act to the given circumstances.

The ontology was built with open-source software Protégé [10], from which we will also use some

screenshots to present work done in Fit4Work. Protégé is implemented in Java language on top of the OWL

API [22,9]. OWL API is Java API for manipulating and creating OWL ontologies. We utilized the Pellet

reasoner [11], which can be combined with SPARQL-DL queries [5, 6, 7]. Output of the ontology is the list of

feasible actions which can improve the ambient parameters in near future. The SPARQL-DL query is used to

find such actions.

4.1. Classes and individuals
The ontology is composed of classes and subclasses. Subclasses inherit properties of their parents. OWL has

superclass Thing, which is superclass of all classes. In OWL, there is also a class that is a subclass to all

classes, called Nothing. In Fit4Work ontology main classes are Building, Device, Action, Parameter,

ParameterQuality and State. Complete hierarchy of the classes can be seen in Figure 4.1.

13

Figure 4.1 Snapshot of full hierarchy of ontology from ontology editor Protégé

The term Individuals are used for instances that can be in none, one or more classes: e.g. individual

Temperature will be in class Parameter and according to its current value it will also have certain quality,

therefore will be in appropriate class of ParameterProperty. Individual of device will be in class Device, but

will also be in one of the State classes.

Subclasses in main classes, except ParameterQuality, are pairwise disjoint within each class. For example,

individual of the Device cannot be instance of Heater and Light class at the same time. Subclasses of State

class are pairwise disjoint, but their subclasses are also pairwise disjoint. For example, if we have Device

Light, it can be a member of either OnState or OffState. Individuals of Parameter (let us say for example

CO2) are according to their current value member of ParameterProperty class. They can be Good, Bad or

Medium. If they are not Good, they are also member of class Deviation, where we get information if they

are too high or low, therefore are in class TooHigh or TooLow. Subclasses in Deviation and Quality are also

pairwise disjoint.

4.2. Object-properties and data-properties
Properties are binary relations, whereas we have two type of properties. We can also define mathematical

properties for ontology properties, such as transitive, symmetric asymmetric, reflexive, irreflexive,

14

functional, inverse-functional, inverse to some property. We can also define sub-properties, which is similar

to subclasses, meaning individuals linked with sub-property are also linked with super-property, inheriting

all of super-property properties. Properties can also be disjoint, meaning that individual cannot be linked by

disjoint properties at same time.

OWL defines two types of properties, object-properties and data-properties. Object-properties define

relations between two classes or individuals. We can also define domain of the property and range of the

property, meaning that relation must have individual of class defined in the domain linked to the individual

that is a member of the class defined in range. For example, we define relation influences with domain of

class Action and range of class Parameter. Instances of class Action may influence individuals of class

Parameter. Full hierarchy of object-properties can be seen in Figure 4.2

Figure 4.2 Hierarchy of object-properties defined in ontology.

Properties hasAction and hasState both have domain Device, but have range Action and State respectively.

Properties hasDeviation, hasQuality have domain Parameter and range Deviation and Quality respectively.

Relation hasDevice connects Building with Device. Property influence has domain Action and range

Parameter. Same domain and range by definition apply to all sub-properties of property influence. Note

that we defined some inverse relations: influences is inverse to isInfluencedBy, hasDevice is inverse

to isDeviceIn. Relation X that is inverse to relation Y, has opposite domain and ranges. Property influence

has sub-properties increases and decreases, which are disjoint, meaning that individual of Action cannot

increase and decrease individual of class Parameter at the same time. Sub-properties influencesWeakly and

influencesStrongly are also disjoint.

We also defined data properties, which connect individuals of classes to an actual chunk of data presented

in Figure 4.3. The data property hasValue is a link between individual of Parameter (e.g. Temperature) and

15

an actual value (e.g. 22). The data property hasStateValue is used for storing “raw” state value of

individuals from class Device (e.g. Heater). Values are retrieved from the real sensor. For the purpose of

development of Fit4Work ambient conditions monitoring, we implemented a smartphone application to

enable the user to label the current status of device. For the final product, the state values will be provided

from virtual sensors, which are machine-learning models trained to estimate the state of the devices.

Parameter values are measured with NetAtmo station (temperature, humidity, CO2, external temperature,

external humidity, noise) and one with smart phone (luminosity). According to state values of devices and

values of parameters, reasoner infers in which State class the Device is in and in which ParameterProperty

class Parameter is in according to SWRL rules covered in Section 4.3.

Figure 4.3 Hierarchy of data-properties defined in ontology

4.3. SWRL rules
Complex rules are expressed with SWRL (Semantic Web Rule Language) rules. They enable to insert so-

called built-ins, where we can perform simple math equations, which is especially suitable with making

comparisons between internal and external parameters (important when deciding how window action is

influencing parameter temperature and humidity). It is important if external parameters are higher/lower

than internal, because opening window cause air mixing and internal parameters are converging towards

external. SWRL rule is built from body (antecedent part) and head (consequent part). Single unit of the

SWRL rule is called atom and can be either true or false. Atom can be unitary (whether individual is part of

a class), binary (whether relation holds true between two individuals) and in some cases also n-nary (in

various built-ins). If all atoms in body part are true, it follows that also all atoms in head part are true. More

about SWRL rules can be seen in [3].

4.3.1. State rules

With SWRL rules we implemented some simple state rules for devices, which depends on state values of

devices. We defined class State, which has few subclasses to define states for various devices. Device

individuals are then put in one of the subclasses of class State.

Some of devices has binary state values, on and off. In our setting, we have light and humidifier as those

kind of devices. We construct rule, that individual of any of those classes is in class OnState if state value is

1 or OffState if state value is zero.

We also defined devices with 3 possible states: MinState, MediumState and MaxState. Those devices are

heater and ventilation. We defined possible state values for devices ranging from 0 to 100, where if device

has state value of 0, it belongs to MinState class, if it has value in open interval of 0 and 100, it is in

MediumState class or it belongs to MaxState class, if it has state value of 100.

16

Air-condition device has state values ranging from 17 to 27. This set-points were chosen according to

common sense on what are the minimum and maximal possible set-points for air-condition device. We

defined 4 possible states to present air-condition device: It can be in OffState, if it is not turned on,

MinState, if it has state value 17, MaxState if state value is of 27, and every other state value between 17

and 27 puts device in class MediumState.

Figure 4.4 Example of establishing state rules of Heater device

First atom in every rule in Figure 4.4 defines variable that belongs to individual Heater. With second and

third atom we created interval that state value can be in. Note that we set “dummy” bounds for MinState

and MaxState. State values of device Heater can range from 0 to 100, so we can afford liberty of setting

dummy bounds in order to achieve desired goal. The head (consequence) of every rule tells us, that

individual will be member of class MinState, MediumState or MaxState. Classes are disjoint, so no

individual can be member of more than 1 of the classes at all time. It can also be seen, regarding defined

range, that individual heater will be member of exactly one class. Similar rules are defined on other devices.

We also used 3-state protocol for device Window, since it can be closed, opened or half-opened. So

individual of Window is in MinState if Window is closed, in MediumState if Window is half opened and in

MaxState if Window is opened. We implemented initialization of rules in Java with OWL-API.

4.3.2. Action rules

We used rules to define which action Device individual has according to their State. If device is in one of the

possible states, it has actions to go to other possible states. For example, if Window is in MediumState, it

has possible actions WindowActionOpen and WindowActionClose. We wrote this rules in ontology directly

with Protégé SWRL rule editor, example of one such rule can be seen on Figure 4.5.

Figure 4.5 Example of one predefined SWRL rule, that defines which actions are possible from current state of Device individual.
This example shows us Heater individual.

4.3.3. Property of parameters rules

For assessment of the parameters, we created class ParameterProperty with two subclasses: Quality and

Deviation. Parameter can be of bad, medium or good quality. If it is not of good quality, then it can be too

hasStateValue(Heater, ?it), greaterThan(?it, -2.0f), lessThanOrEqual(?it, 0f) -> Min(Heater)

hasStateValue(Heater, ?it), greaterThan(?it, 0.0f), lessThanOrEqual(?it, 99.0f) -> Medium(Heater)

hasStateValue(Heater, ?it), greaterThan(?it, 99f), lessThanOrEqual(?it, 100.0f) -> Max(Heater)

HeaterMin(?heater) -> hasAction(?heater, HeaterIncrease)

HeaterMedium(?heater) -> hasAction(?heater, HeaterIncrease), hasAction(?heater, HeaterDecrease)

HeaterMax (?heater) -> hasAction(?heater, HeaterDecrease)

17

high or too low (which are subclasses of class Deviation). We also established simple rules, to assign

individual of class Parameter to proper subclasses of class ParameterProperty. Example of such rule can be

seen on Figure 4.6. Similar rules are applied for other parameters.

Figure 4.6 Example of SWRL rules, where we define range that Humidity is too high and it is in bad range

Bounds for deciding, whether individuals of Parameter are in class Good, Medium or Bad are defined after
expert recommendations (Figure 4.9). To initialize those rules, we implemented generic method
parameterRule in Java with OWL-API. With this method, we are able to modify bounds, which may be
usable, if we would like to adjust bounds according to user feedback. Writing from practical experience,
when we were developing and testing system in winter time, many occupants were complying about
temperature being too low, when it was in Good interval (on Figure 4.9 we can see that 21°C is still Good
temperature, while it was too cold for some of the occupants in the office). On Figure 4.7 and Figure 4.8
we can see snippet from the code.

Figure 4.7 . We implemented method parameterRule, which takes OWL ontology o, and defines to which Quality will individual
of Parameter belong to, given its current value.

Figure 4.8 Example from Java code, where we initialize SWRL rule in this case for Temperature

hasValue(Humidity, ? x), greaterThan(?x, 60.0f) -> TooHigh(Humidity)

hasValue(Humidity, ?x), greaterThan(?x, 70.0f), lessThanOrEqual(?x, 100.0f) -> Bad(Humidity)

private void parameterRule(OWLOntology o,float lowerBound, float

upperBound, String qualityString, String parameterString)

float lowerBound = 21f;

float upperBound = 23f;

float mediumBound = 2f;

parameterRule(o, -300, lowerBound-mediumBound, ":Bad",

":Temperature");

parameterRule(o, lowerBound-mediumBound, lowerBound, ":Medium",

":Temperature");

parameterRule(o, lowerBound, upperBound, ":Good", ":Temperature");

parameterRule(o, upperBound, upperBound+mediumBound, ":Medium",

":Temperature");

parameterRule(o, upperBound+mediumBound, 300, ":Bad",

":Temperature");

18

Figure 4.9 Figure is showing bounds of the parameters Noise, CO2, Humidity, Illuminance and Temperature in winter and
summer time. Intervals marked as number 3 are presenting zones, where single parameter have Good value. Sections marked
with 2 are representing Medium zone, whereas sections with mark 1 present Bad zones.

4.3.4. Influence rules (increase/decrease and influence strongly/weakly)

According to possible actions of devices, we have to define how actions affect certain parameters. We

define in ontology itself rather simple rules, such as HumidifierActionOn increases Humidity,

HeaterActionIncrease increases Temperature, etc. We used SWRL rules to define how window actions are

influencing individuals Temperature, Humidity and CO2.

Figure 4.10 Example of SWRL rule. It compares internal and external temperature and according to result, it determines wether

actions with windows increases or decreases internal temperature.

Figure 4.10 presents a rule with which we compare internal and external temperature and then establish

relation influence between window actions and parameters. For individual Humidity, we have to derive

additional individual AbsoluteHumidity, because NetAtmo station provide us only with relative humidity

inside and outside. With additional information of temperature, which we also possess inside and outside

hasValue(Temperature, ?it) , hasValue(ExternalTemperature, ?et), lessThanOrEqual(?et,?it)

->

decreases(WindowActionOpen, Temperature), increases(WindowActionClose, Temperature),

decreases(WindowActionHalfOpen, Temperature)

19

value of, we are able to derive absolute humidity, which is then presented to ontology (we implement this

in Java code). Similar rules as one described above were applied to create relation of influence between

actions of window and Humidity parameter. All rules described above are written in SWRL rule-editor using

Protégé.

We also define sub-property of influence, which is if action influence strongly or weakly given parameter.

With other devices, except window, relations are straight-forward: HeaterIncrease influences Temperature

strongly, HeaterDecrease influences Temperature weakly. HumidifierOn influences Humidity strongly, when

HumidifierOff influences weakly. All air-condition actions influence Temperature strongly. We predefined

described rules in SWRL rule editor.

Strength of influence of window action depends on external parameters. We used built-ins to derive

absolute difference between external and internal parameters for Temperature and Humidity (note that we

used absolute humidity). We implemented generic method for initialization of these rules with OWL-API,

since we have to set bound, that determines how much has to be the difference between internal and

external parameter to determine strength of influence.

Figure 4.11 Example of SWRL rule how strongly Window influences Temperature

In rule on Figure 4.11 we express that if difference between internal and external Temperature is more

than 5°C, WindowActionOpen influence strongly on Temperature. If it is smaller, than similar rule apply,

except this time WindowActionOpen influences weakly on Temperature. Similar rules are applied for

WindowActionClose and in analog manner rules for Humidity apply.

4.4. Putting all pieces together and querying with SPARQL-DL
Figure 4.12 presents the whole layout of the ontology. At initialization of the system, we create new

individual Room of class Building and list which devices it possesses. We also tell ontology which state

values devices has and values of Parameters. With OWL-API, we initialize some SWRL rules, some of them

are already predefined within ontology. Reasoner then, using rules and defined axioms of ontology, infers

and puts ontology in a valid state. We want to know from ontology, which actions can be taken in order to

improve parameters, which are in medium or bad zone. So we find parameter, that is in not good zone,

check if it is too high or too low and appropriately find actions that influence that parameter in right way (if

it is too high, we must find actions that decreases that parameter and vice-versa). Action that we get from

this special query are then presented as output of the ontology. This special query is called SPARQL-DL

query [5, 6, 7], whose predecessor (SPARQL) was firstly designed to answers RDF queries [4]. We can see

example of SPARQL-DL query, used in the application in Figure 4.13. In example we search for individuals of

class Action that influences individuals of class Parameter, Bad and TooLow. We use similar queries to

consider parameters that are too low and in medium zone, and parameters that are too high and are in

medium and bad zone, which results in 4 queries. All found actions are then presented to the next step of

the system.

hasValue(Temperature, ?it) , hasValue(ExternalTemperature, ?et), subtract(?diff, ?it,?et), abs(?adiff,

?diff), greaterThan(?adiff, 5f) -> influencesStrongly(WindowActionOpen, Temperature)

20

Figure 4.12 Overview of the ontology

Figure 4.13 Example of SPARQL-DL query in application

PREFIX onto: <http://www.semanticweb.org/anton/ontologies/2015/8/fit4work-ontology#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

SELECT DISTINCT ?par ?action ?device ?influenceType

 WHERE{

 ?par a onto:Bad ;

 a onto:TooLow ;

 onto:isInfluencedBy ?action ;

 ?influenceType ?action.

 ?influenceType rdfs:subPropertyOf onto:isIncreasedBy .

 ?device onto:hasAction ?action .

 onto:Room onto:hasDevice ?device

 }

21

5. Discussion
In this deliverable we present the knowledge base used for recommendations presented in deliverable

3.3.1/3.3.2. The knowledge is either in form of list of most relevant activities in elderly, daily and weekly

requirements, in form of a set of exercises in case of functional fitness exercises and stress relief exercise

and in case of ambient conditions in form of an ontology.

Future work includes updating the knowledge base for each module, with the use of tools discussed

herewith and in relevant sections of deliverable 3.3.1/3.3.2.

22

6. Bibliography
1. OWL 2 and SWRL Tutorial. http://dior.ics.muni.cz/~makub/owl/ (Online 3.4.2016)

2. Web Ontology Language. https://en.wikipedia.org/wiki/Web_Ontology_Language (Online 3.4.2016)

3. SWRL Language FAQ. http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ (Online 3.4.2016)

4. SPARQL Query Language for RDF. https://www.w3.org/TR/rdf-sparql-query/ (Online 3.4.2016)

5. I. Kollia, B. Glimm, I. Horrocks. Answering Queries Over OWL Ontologies with SPARQL.

http://webont.org/owled/2011/presentations/4Kollia.pdf (Online 3.4.2016)

6. I. Kollia, B. Glimm, and I. Horrocks. 2011. SPARQL query answering over OWL ontologies. In Proceedings

of the 8th ESWC on The semantic web: research and applications, 382-396.

7. Sirin, Evren, and Bijan Parsia. SPARQL-DL: SPARQL Query for OWL-DL. OWLED. Vol. 258. 2007.

8. Matthew Horridge, Sean Bechhofer. The OWL API: A Java API for Working with OWL 2

OntologiesOWLED 2009, 6th OWL Experienced and Directions Workshop, Chantilly, Virginia, October

2009

9. The OWL API, http://owlapi.sourceforge.net/ (Online 3.4.2016)

10. Knublauch H., Fergerson R. W., Noy N. F., Musen M. A. 2004. The Protégé OWL plugin: an open
development environment for Semantic Web applications. In Third International Conference on the
Semantic Web, Hiroshima, Japan, pp. 229--243.

11. E. Sirin, B. Parsia, B. C. Grau, A. K., Y. Katz. 2007. Pellet: A practical OWL-DL reasoner. Web Semant. 5, 2,
51-53. http://dx.doi.org/10.1016/j.websem.2007.03.004

http://dior.ics.muni.cz/~makub/owl/
https://en.wikipedia.org/wiki/Web_Ontology_Language
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLLanguageFAQ
https://www.w3.org/TR/rdf-sparql-query/
http://webont.org/owled/2011/presentations/4Kollia.pdf
http://owlapi.sourceforge.net/

