
1

Acronym: vINCI
Name: Clinically-validated INtegrated Support for Assistive Care and Lifestyle

Improvement: the Human Link

Call: AAL 2017 “AAL Packages / Integrated Solutions”

Contract nr: AAL-2017-
Start date: 01 June 2018
Duration: 36 months

D4.2. Kits deployment and validation

Nature1: R
Dissemination level 2: CO
Due date: Month: Month 6
Date of delivery: Month 6
Partners involved (leader in bold): ICI, NIGG, UNRF, NIT, SAL, CTR, CMD

Project Co-Funded by:

Project Partners:

[1] L = legal agreement, O = other, P = plan, PR = prototype, R = report, U = user scenario
[2] PU = Public, PP = Restricted to other programme participants (including the Commission Services), RE = Restricted to a group specified by
the consortium (including the Commission Services), CO = Confidential, only for members of the consortium (including the Commission
Services)

2

Partner list:

No. Partner name Short name Org. type Country

1 National Institute for Research and
Development in Informatics ICI R&D Romania

2 Marche Polytechnic University MPU R&D Italy

3 University of Nicosia Research Foundation
UNRF R&D Cyprus

4 National Institute of Telecommunications NIT R&D Poland

5 Connected Medical Devices CMD SME Romania

6 Automa Srl AUT SME Italy

7 Optima Molliter (f. Salvatelli) Srl SAL SME Italy

8 National Institute of Gerontology and
Geriatrics “Ana Aslan” NIGG R&D Romania

9 Comtrade Digital Services CTR Large enterprise Slovenia

10 Orange Polska S.A. OPR Large enterprise Poland

 Revision History
Rev. Date Partner Description Name

1 05.05.2019 ICI Created the template, added the sections and
draft content

Ciprian Dobre

2

3

 Disclaimer:

The information in this document is subject to change without notice. Company or product names mentioned in this document may be
trademarks or registered trademarks of their respective companies.

All rights reserved
The document is proprietary of the vINCI consortium members. No copying or distributing, in any form or by any means, is allowed without

the prior written agreement of the owner of the property rights.
This document reflects only the authors’ view. The European Community is not liable for any use that may be made of the information

contained herein.

3

Contents
1. Introduction .. 4	

1.1. An updated work scenario ... 7	

1.2. vINCI’s Architecture ... 8	

1.3. Mapping vINCI’s architecture on partners and technologies ... 11	

2. vINCI Kits ... 13	
2.1. Description .. 13	

2.2. Infrastructure ... 16	

3. The vINCI Dashboard - UI ... 22	
Bibliography ... 27	

4

1. Introduction

vINCI project proposes a novel approach for providing personalized assistance services for patients in
an IoT-based ecosystem. In this context, the challenge remains to develop technologies that meet the
needs of older adults, accommodate their cognitive and perceptual declines, capitalize on their intact
abilities, support them in performing everyday activities, and protect their privacy, independence and
security. In this Deliverable, we describe these exact technologies, at the heart of the project. This follows
Deliverable D4.1, where we described the environment in which vINCI will be implemented and the
behaviours / biomarkers to be monitored.
vINCI aims, thus, to develop an integrated and validated framework using the Internet of Things (IoT) to
provide non-intrusive monitoring and assistance services to older people in order to increase the level of
quality medical care. By integrating open data analysis technology with user-centric IoT devices in four
standardized kits as well as by implementing business models, vINCI aims to provide support to people
providing intelligent care and assistance to the elderly who are treated in ambulatory clinics or doing
outdoor activities. To verify, test (clinically validate) and identify added value, two controlled
multidisciplinary pilots will be launched (in Romania and Cyprus) and two open-call validations (in Poland
and Slovenia) with implementation in controlled environments real-life case studies with the involvement
of older people in Europe. The ultimate goal is to demonstrate a systematic approach to ensuring the
highest level of quality control, automatic monitoring and data management.
The main objective of the vINCI project is to create an integrated technology platform, through which the
elderly is discreetly monitored (mixed technology) through sets of extensible technologies, personal
records being safely stored (through confidentiality techniques) and analyzed to retrieve information to
be delivered to carers (via a single dashboard) to detect early symptoms of age-related deficiencies
(proactive loop) and trigger alerts related to possible incidents (such as falling , reactive loop).
The vINCI platform has four inputs: a static profile of the patient; the results of a Quality of Life
Questionnaire (QoL) as perceived by the elderly person monitored; data from monitors that are
integrated into the platform (smartwatch, smart shoes, depth camera); and questionnaire data on the
level of activity and the psychosocial level of the monitored person. All of these compose a model of the
data monitored for a vINCI person, a model we will validate under clinical conditions using clinical data
provided by medical staff in Romania (the NIGG pilot).
The smart shoes are equipped with Force Sensing Resistors (FSRs), which provide variable resistance
according to the force applied to the active area of the sensor. An algorithm implemented and executed
within the shoe electronics collects sensor resistance values and identifies various conditions and
activities: sitting, walking, running, or if shoes are not worn. Each such state is identified by a different
numeric tag that is transmitted to a remote server via a wireless communication interface (the
transmission is triggered by a state change). When shoes are not worn by the subject, an initially selected
time interval is used to set a proper status tag; from that moment, whenever the condition changes (e.g.,
from state to rewind or back), a packet is sent to the remote server. By collecting the packets of data
transmitted over time and by checking server time-outs, it is possible to plot a timeline of the physical
activities performed by the subject, such as the derivation of the information related to how long it stood
in each state considering the entire sub- observation.
The smart shoes (SS) feature a wireless communication interface (BLE or LoRA) that can be used in
indoor scenes. A transceiver is using in-shoe electronics to convert sensor-generated data into packets

5

that are transmitted to a BLE receiver, such as a smartphone, or to a WiFi router, from where they are
forwarded to a remote server. For each SS pair, a shoe is equipped with an onboard sensing device
(which includes the FSR). The electronic board is equipped with a wireless transceiver that includes low
power capabilities (so the shoe can be operated for a long time). These details can be found in the Figure
below. Each transmitted message contains a numeric value representing the status / activity recognized
by the device, such as running, walking, etc.

Fig. 1. Data transmission for the smart shoes.

The data provided by the depth sensor depends on the configuration of the function the sensor is used
for. In a top-view configuration (which fits best with the project), with the sensor located physically on the
ceiling, we can recognize and track the subject by processing the frames generated by the sensor.
Once the tracking mode is active, the depth sensing system sends the list of spatial coordinates
according to the top-view plan to the remote server. In such a configuration, we can identify the patient's
"blob" and locate it in an observable environment (eg, we can detect how long the subject spends in a
certain area, such as how long it stayed on the couch).
On the server, the information about how long the subject spent in a particular area is extracted - we
have the necessary technology, but the depth sensor will most likely have to be coupled with a video
camera to detect a particular person in a group (suppose the tracking action takes place in a family, and
we want to track the in-house actions of a particular member of that family, in particular). Research in
this regard is innovative and has been launched within the project.
If the depth sensor is used in front of the subject, it is possible to extract the so-called body joints'
coordinates relative to the subject, that is the spatial coordinates of a number of specific points
associated with the human body's landmarks. By collecting these coordinates and processing them, it is
possible to obtain a representation of the movements made by the subject - this is also an innovative
aspect of the project.
The depth camera is equipped with a USB interface (USB3.0 for Kinect v2, or USB 2.0 for Orbbec Astra
Mini) and requires a connection with a computer - we may use a mini computer (such as Intel NUC i3-
7100U) to interface with the sensor, get the signals and process it locally. Data sent to the vINCI platform
will not be raw data but information data (such as already recognized junction points, or even detected
activity). Figure 2 schematically shows how the deep sensor connects to the remote server.

6

Fig. 2. Connection between the depth sensor and the backend server.

The smartwatch transmits information to the Connected Medical Devices platform, where it is exported
in JSON format and sent to the vINCI platform (see also Figure 3). The data format is as follows: GPS
location / time; Number of steps; Battery level; Nr. times when the clock came out of a defined area; time
intervals when the clock was removed from the hand.

Fig. 3. Connection between the CMD smartwatch and the platform.

The CMD platform stores and interprets information such as the phone number associated with the SIM
inserted in the clock, the phone number of the device where the CMD mobile application is running, GPS
points in time (tracking information), or “safe zones / geo fences” currently associated with a clock.
The fourth component is represented by vINCI Digital Caregiver application - an application running
on the mobile tablet that the Subject has at home. The connectivity between the application and the
vINCI modules is provided using conventional broadband communications technologies (WiFi or LTE, if
there is a Wireless Router in the Subject's home, or Ethernet or 3G / 4G, depending on the specific
conditions in the home). This Caregiver is integrated directly with the vINCI platform, without the need
for interfacing through edge nodes.
All information provided to the vINCI platform will be sent using cryptography solutions (for personal data
protection)

7

1.1. An updated work scenario
After analyzing the technological changes compared to the time of the project proposal (in Deliverable
D2.1), we came to the conclusion that the working scenario described (originally) in the vINCI proposal
requires a reconsideration. Thus, for the purpose of monitoring a topic, we use the following: DHL One
watch, intelligent shoes, depth camera (the exact proposal is reflected here), and a series of Quality of
Life Questionnaires (newly introduced).
The analysis carried out together by technology experts, partners with expertise in geriatrics and
psychosocial science has led to the following scenario of vINCI:
Step 1 - The static profile of the patient is determined through a set of clinical questionnaires. Once
enrolled in vINCI, the subject (or its family, if required) receives a Tablet that runs the VINCI Digital
Caregiver application. The subject registers and creates an account / profile in the system (a Web
alternative will also be available for this step).
Step 2 - Next, the subject completes a WHOQOL questionnaire to determine the perceived level related
to the Quality of Life Index. An example of how we want to construct this questionnaire (and others) can
be found in Figure 3. As we can see, we want an easy way for the Topic, most likely based on Smileys.

Fig. 3. Examples of questions to be answered by the Subject.

The questionnaire will be provided with as few details as possible (the absolutely indispensable text
being provided in the native language of the Subject) and as many accessible input methods as possible.
The tablet online form will be repeated periodically to continually re-evaluate the patient's clinical status
(and adjust the scales used to monitor vINCI accordingly).
Step 3 - From this point on, the Subject wears the CMD watch. In the house, the patient is monitored by
the depth camera coupled with a video camera. First, we train the algorithm to track the person in the
house, with the goal of continuously detecting the level of activity associated with it. Next, we aim to
extend the project to detect fragility issues by monitoring the person while doing some exercises
developed by us and tracking how the subject performs them (we are interested in mobility in the hands
and feet, for example).
Periodically, the Subject is also asked to complete the D-VAMS and IPAQ questionnaires to get the
levels he perceives related to activity and social issues.
Step 4 – Room kits, watch, shoes, questionnaires, they all serve to obtain subject-relevant data.
However, to correctly interpret these data, we need properly validated clinical models. In the clinical
pilots, we will use alternative medical methods to get factual issues related to the subject's health. These
aspects will then be mapped to data captured by vINCI technology (based on sensors), with the goal of
building supervised learning models.

8

1.2. vINCI’s Architecture
The architecture of the project (Figure 4) is based on requirements analysis and a study of the specialized
literature, where we started from consulting similar previously developed projects.

Fig. 4. Architecture behind the vINCI platform.

Conceptually, our project falls within the Internet of Things scope of - more precisely, the vINCI platform
can be assimilated to a service exposure solution across a data collection platform (which in the literature
is called Platform as a Service). There are platforms from which we could have started, such as Amazon
AWS IoT1, Microsoft Azure2, Google Cloud Platform3, or IBM Watson Internet of Things4. Each one
follows a similar architectural principle, including a broker, security engine and identity modules, or
modules for managing the status of sensors or connected devices. However, such platforms do not help
to create applications (kits in our case) tightly enough to support the processing of data captured under
the most diverse conditions.
Which is why, in the project we decided to go to an architecture based on micro-services. The
architectural extensions for this are shown in Figure 5 below. Hardware devices (such as smartwatches
or shoes) are recorded in vINCI (with a unique ID). The data sent by the sensors are received either via
an API over HTTPS or through the MQTT (messaging queue) protocol by a gateway. Since vINCI
provides more services / kits, we will assign a list of sensors that the platform receives to each monitored
subject, and we will select which services to receive what data. Everything is dynamic, in the sense that
a user can decide not to use the shoes for example, just the watch, or she can decide that she does not
need the home monitoring kit, etc. In addition, this architecture allows a service adaptability according to

1 https://aws.amazon.com/iot
2 https://azure.microsoft.com/en-us/product-categories/iot/
3 https://cloud.google.com/gcp
4 https://www.ibm.com/internet-of-things

9

the communication protocols we use - intelligent shoes, for example, can send data over Bluetooth Low
Energy (BLE) to the smartwatrch, from which a single message is sent at a time which contains the
concatenation of the information with those provided and the clock, or the shoes can send data over
LoRa or other WiFi protocols. The smartwatch, on the other hand, uses broadband transmission
technology.

Fig. 5. The micro-services based architecture of the vINCI platform.

Such a micro-services based solution has several advantages: each microservice can be developed
independently of each other; microservices are faster and require lower development and operating
costs compared to monolithic services; each component can be coupled with its own database,
depending on the services developed; a microservice-based architecture provides security through
encapsulation, high availability and scalability given by the orchestration component.
In this architecture, hardware device refers to the sensors used to collect data sent to the vINCI platform.
A network server receives this data and performs a first set of checks (eg, no duplicate data, entries
recorded are valid, etc.) and sent to a decoding service (from sensor-specific data formats to internal
work format, JSON, vINCI platform). An example of data sent to the gateway and stored in the vINCI
database is shown below - a JSON array containing information from multiple devices (eg, shoes and
watch together). lat and lon are the geographic coordinates of the device that sent data, timestamp is
the time when data is received by the network server (which can also be deployed on a smartphone),
devAddr and devEUI are the device addresses, and payload is the information sent by the device.

{	

		"devices"	:	[

		{	

10

				"lat"	:	"45.862",	

				"lon"	:	"26.642",	

				"timestamp"	:	"2018-02-13	T	10:30	UTC",	

				"devAddr"	:	"DD15AF9E",	

				"devEUI"	:	"0004A30B001C1C79",	

				"payload"	:	"00FF00FF00FF"	

		},	

		{	

				"lat"	:	"45.861",	

				"lon"	:	"26.342",	

				"timestamp"	:	"2018-02-13	T	10:31	UTC",	

				"devAddr"	:	"DD15AF0E",	

				"devEUI"	:	"0004A30B011C1C79",	

				"payload"	:	"FF00FF00FF00FFFF"	

		}]	

}	

In particular, this information is interpreted by a decoding service in vINCI, because sensor data can
come in any type of owner. To illustrate this, we present the data format as received from CMD THL One
Smartwatches:

[

				{	

								"_id":	"5b19c84e807dd234ff805f4f",	

								"ei":	"352413080006397",	

								"si":	"9226103000013506",	

								"dt":	"2018-06-08T00:05:34.590Z",	

								"s":	"::ffff:109.166.135.51",	

								"c":	 "#@H10@#;352413080006397;9226103000013506;862182;2018-06-
08;03:05:33;heart;\u0005;\u0001",	

								"y":	2018,	

								"m":	6,	

								"d":	8,	

								"p":	"H10"	

				},	{	

								"_id":	"5b1b1496807dd234ff8064df",	

								"ei":	"352413080006397",	

								"si":	"9226103000013506",	

11

								"dt":	"2018-06-08T23:43:18.150Z",	

								"s":	"::ffff:109.166.135.133",	

								"c":	 "#@H11@#;352413080006397;9226103000013506;862182;2018-06-
09;02:43:17;Shutdown;3;?;\u0001",	

								"y":	2018,	

								"m":	6,	

								"d":	8,	

								"p":	"H11"	

				}	

]	

These data can be of two types: $H02-GPS$ and $H14\WiFi$ (of course, we will have a JSON translation
in vINCI for each type). The watch sends the current position in the $H02$ format if it has an active GPS
connection, or in the $H14$ format otherwise. Information sent is IMEI, device ID, transmission date, etc.
Over this architecture, a service / kit is a set of microservices that use data collected from different
sensors to perform various computations on them, to display them, etc. Each kit includes, among other
things, general parameters (e.g., telephone number where an alert is sent when predefined conditions
are met), application parameter parameters defined per sensor (eg, a touch of a temperature threshold,
if in the future we will use such a sensor, trigger an alert), other application dependencies, or a data view
format.
Thus, in vINCI we have three architectural levels: storage, processing, and streaming / viewing. The
storage level contains various databases that are used to store various types of information, from sensor
data to application dependent information. The processing part contains components that facilitate data
processing, and the streaming part contains the tools that use the data and information obtained.

1.3. Mapping vINCI’s architecture on partners and technologies

Fig. 6. Device Relationship Management Integration (DRMI).

12

The proposed architecture will integrate the various devices produced by the partners into the project
using Device Relationship Management Integration (DRMI) (see Figure 6). DRMI is a user-centered end-
to-end architecture that integrates (1) wearable monitoring systems that include wearable devices and
context dependent contexts describing a Subject, and (2) network-dependent content components for
linking service devices monitoring.
The user is equipped with wearable devices that monitor a subject in a capable communications
infrastructure (e.g., using BLE).
Contrary to existing literature where solutions generally integrate various devices using a “black box”,
vINCI architecture provides a close link between the various entities that provide relationships and
interactions between components (here, “links”' are explicitly represented in the diagram) resource
discovery monitors all available resources in terms of wireless devices connected to the platform (and
we also include Edge resources in architecture because an initial processing part will occur in the
premises of the Subject, such that sensitive personal data not to leave her home. The communication
module allows data integration between IoT devices (data fusion) as a result of the interaction between
the Discovery, Communication and Monitoring Plane modules.

Fig. 7. Communication principles underlying the vINCI platform.

The communication architecture is shown in Figure 7. This assumes that the vINCI platform will be
accessible through a public IP address, and connectivity with incoming data providers and data
consumers is via the Internet. In the case of sensor data sources, the platform will interact with edge
nodes: the CMD platform, which will be intermediate for clock data, where raw data from clocks is
processed at a first level, ie. a DC gateway, where Deep chamber data is initially processed to extract
features relevant to the vINCI platform. These edge nodes implement the communication and discovery
functionality of DRMI.

13

2. vINCI Kits
2.1. Description
vINCI develops a platform where an older adult is monitored through a set of extensible technologies.
Each individual recording is stored and analysed to automatic extraction of features (information) to be
used in the detection of deterioration of symptoms associated with old age.
A set of monitoring devices (the kits) are being used:

- The CMD watch. This is a product being developed in Romania and sold in several countries in
Europe, but in constant improvements in new versions to integrate additional features.

Fig. 8. The smart watch being used in vINCI (photo example).

- Smart shoes: the design started first with the idea of developing the shoes that integrate in the

sole a set of pressure sensors. But, business-driven, we now migrated towards the development
of smart insole that integrate these sensors (it makes sense, as an insole pair can then be used
with any shoes already belonging to the older adult).

- On-premises camera. Here we first started the development with Kinect cameras (as mentioned
in the proposal). Some example of our findings in this process are illustrated below.

Fig. 9. We used for the development kits both the Microsoft Kinect Xbox One (left) and Microsoft

Kinect Xbox 360 (right).

14

Fig. 10. Tracking the skeleton of a person using a Kinect sensor a) the person stands in

front of sensor; b) the person has raised his hands with closed fists.

Fig. 11. Example of a first Kit example (testing with Kinect).

However, Microsoft discontinued its support for Kinect5, which rendered our development efforts
in this direction useless (although technically we can still develop the streaming-based Kit with
Kinect, the fact that Microsoft no longer provides updates for Kinect and connected tools, would
raise considerable security problems later on).
Because of this, in vINCI we started looking for alternatives. Out of the many technologies
surfacing in the area of depth sensors, our analysis show that the Orbbec Persee6 camera to be
one of the most advances and interesting alternatives. This camera, integrating depth and video
cameras, is being developed by an SME, Orbbec, founded in 2013 in US.

5 https://www.theverge.com/circuitbreaker/2018/1/2/16842738/microsoft-kinect-adapter-xbox-one-x-s-
discontinued
6 https://orbbec3d.com/product-persee/

15

Fig. 11. The Orbbec Persee camera used in vINCI.

As such, we bought development Persee cameras (in Italy and Romania) and currently develop
the kit with this technology. In the clinical pilots, we are creating dedicated rooms where the
camera and monitors are being installed, and where the patients participating in the validation
periodically visit and perform a set of monitored exercises.

- The fourth vINCI Kit is the represented by the questionnaires (for QoL, physical activity, social
aspects).

At this point, we recall the flow of data in vINCI (already discussed in Deliverable D2.1, based on the
analysis of requirements):

Fig. 12. The flow of data, starting from the devices, derived into information based on an evidence

model, towards possible alerts based on a sensed deterioration in old age conditions.

The way these Kits work is the following (with links to technologies):

16

Step 1 – the static profile of the patient is detected by means of a set of clinical questionnaires. With the
enrolment in vINCI, the subject (or her family) receives a smart tablet which runs the vINCI Digital
Caregiver. In the business case, the smart tablet can be included with the Kit, or we can use a smart
tablet already own by the Subject (we offer choices). The subject registers and creates an account /
profile in the vINCI system. A Web-based alternative is also offered for this step (the Digital Caregiver is
a mobile-enabled Web application).
Step 2 – Next, the Subject fills in the WHOQOL questionnaire, for determining her perceived Quality of
Life level. We want to ease the interaction of the Subject with all questionnaires, and for this reason we
try to adjust the paper-based forms to an electronic one where some questions could use as input visual
helpers (like smiley faces, showing possible alternatives in answers, from very sad, which would be
represented as sad face, to very happy, represented as happy face).
In the clinical pilots, the answers will be filled in under the supervision of a caregiver. For real-world, the
Subject will either be helped by some member of the family, or she could enter the answers herself.
The questionnaire will be periodically re-run, for a continuous evaluation of potential deterioration of the
old age-associated conditions. If the QoL level is low, then we go to...
Step 3 – From this point on, the Subject wears the nice CMD smartwatch and smart insoles / shoes.
Within the house premises, the Subject is monitored periodically with the Orbbec Persee camera.
At first, we train a machine learning model for tracking the person within the house (the purpose is to
have a continuous monitoring of activities being done by that person). The idea is to use multiple sensors,
like the depth sensors for detecting the posture, and the stereo video camera for face detection (you can
imagine that in the house there are several habitants, and we want to be sure who is the tracked person).
The Orbbec Persee camera is equipped with a standalone processing unit (running Android), and on
this unit all the detection takes place. This means that no personal data goes outside the house, we only
send features (like the posture of the person, not its identity of any aspects related to its surroundings)
to the Cloud backend.
Next, we monitor, using the same camera, frailty conditions again associated with old age. For this, we
develop a separate application for exercise tracking: the Subject is placed in front of the TV/monitor, and
a virtual avatar asks her to perform (showing how) a set of exercises. The Subject performs them, and
she is being monitored in terms of how accurate and according to instructions the exercises are
performed: on premises, we extract the skeleton features, which are sent to the Cloud (as time frames)
along with the joints of the avatar (for comparison in terms of how far away from an ideal posture).
Step 3.1 – Periodically, the Subject is notified to fill in the D-VAMS and IPAQ questionnaires (using either
the tablet or the browser), to get the perceived levels of physical and social activities.
Step 4 – The smartwatch, smart insoles, questionnaire, all serve to get relevant data features about the
Subject. Such data is used to train a model of her profile (matching the data also against the Patient
Profile model being constructed in vINCI). However, to interpret and construct such a model, we need
clinically-validated facts (what it means to experience a deterioration in the conditions associated with
old age, what parameters are affected and how...). Within the Romanian clinical pilot (with the Ana Aslan
institute), we use alternative medical tools to get such facts: those will be mapped on the data captured
through the vINCI technology. Thus, the “smartness” in vINCI will be given from a supervised machine
learning algorithmic construction (in the clinical tests), that will next be used to extract set of clusters to
advance towards an unsupervised (or reinforced, if possible) construction (in the real-world cases).

2.2. Infrastructure
After discussing the decisions taken towards the construction, we now present considerations linked to
what we use for the development of these kits.

17

First, to cope with quality guarantees (reliability, scalability, technological adaptation, and separation of
concerns), we decide to construct our backend using a microservice approach (using Docker containers).
The functionality and orchestration over the production serverless virtual infrastructure is, as such,
decoupled. On top, Kubernetes7 (and Rancher8 for setting up the environment) provides the
orchestration service.
The set of considered non-functional requirements (that limits in the end the decisions we took to only a
set of potential technologies to employ for the vINCI development) are:

- Security (any access to the API is to be verified against a role-based policy). We use here OAuth
2.0.

- (Site) Reliability (all microservices run stand-alone but considering that at high peak loads we
need the replication of its service). Docker + Kubernetes ensure this layer.

- All commits are atomic / transactional. We will have parallel reads and writes. Consider for
example that, periodically, the ML algorithms runs against all data collected within the last time
interval, but simultaneously some devices might want to still update or insert new data into the
same tables. Concurrent transactions are to be inserted.

Considering past experience of partners in the project, the technological alternatives were:
- For the backend, use either Python (3.x), Node.JS (preferable over vers. 4), or Java Spring.

These are the mature technologies, working great over a containerized setup.
- For the frontend, there is point in doing anything less than working with React or AngularJS

(Typescript).
In the end, we decided and started the development process using JHipster9. This is a free and open-
source application generator used to quickly develop modern web applications and Microservices using
Angular or React (JavaScript library) and the Spring Framework. So it maps well with our development
requirements.
In addition, JHipster provides tools to generate a project with a Java stack on the server side (using
Spring Boot) and a responsive Web front-end on the client side (with Angular and Bootstrap). It can also
create microservice stack with support for Netflix OSS, Docker and Kubernetes.
The following apply to the source code:

- The source code is accompanied by a Docker file used to build the runtime for each individual
vINCI Kit10.

- The image is built such that to also ensure the bootstrap (initial startup of the service), without
requiring external intervention. When this is not possible, we provide sample setups – but they
need to be tested against the deployment.

- The preferred interface for connecting all services is Web JSON Rest API. If possible, no service
should communicate externally other than through such ways.

- Where it makes sense, microservices should support horizontal scaling, by container replication.
A special scalability case is the when web services run as daemons, where the classic approach
is to start (using gunicorn or wusgi) multiple workers/threads for each microservice, in each
container. For latter ones, we avoid as much as possible the use of global variables (as they will
have, most likely, a local interpretation alone, on that particular worker). If one needs to store the
application state, we use in-memory databases (i.e., Redis).

7 https://kubernetes.io/
8 https://rancher.com/kubernetes/
9 https://www.jhipster.tech/
10 In constructing the runtime, we consider avoiding debugging interfacing methods of development frameworks
(eg, flask run, which starts the development server). The runtime includes software ready for production (served
by the web server).

18

The source code repository can be consulted at: https://gitlab.com/vinci-aal (private repository, to
protect the IPR around the project).

When the service renders impossible (or it is inneficient to) running over Docker, we include additional
deployment options (using a keep it simple principle).
The operation mode is described below:

We present each component:

1. The Gateway is the entry component into the vINCI platform (everything from the gateway back runs
into the Cloud, every rectangle in the Figure above being a separated Docker). The Gateway has a public
IP and runs a REST API through which the data from devices is received (we use a Push model, devices
sending the data).

2. The I/O Service is in charge with data persistency. Once the data is received from devices, the I/O
Service checks whether or not that particular device was already registered in the platform. Data is being

19

saved into the personal data vault of the user to which the device belongs (or in behalf of which the data
was sent, as the tablet can be shared by multiple user). Due to privacy considerations, no personal data
is being receives (and, consequently, stored). Still, we regard highly the right to privacy, so the data
belonging to each participant is done with guarantees regarding the verification and authorization (no
other user can see or use data coming from other participants, unless explicit consent is being granted).
3. On top, the Dashboard offers several interfaces:

- Logging/register the user (with the verification that the email is valid)
- Device registration (after login, a user can register devices belonging to her). This means also

the possibility of reading a QR code (in the future, as this is not implemented as of this writing).
Following the registration, the Dashboard calls (REST API) the user service.

- Now the user can see a dashboard where she can select from a number of screens (each
corresponding to one particular device registered). The user can, at any time, access the function
to register/unregister devices.

So, for each device we have a separate Docker service (the vINCI Kit). Its role is to mediate the data
routes between the database and the Web interface of each particular service.
For each kits, we have:

1. Smart watch
The user registers her watch on the platform (using the IMEI or the barcode scanning for the code on
the back of the watch). Next, the Subject starts wearing the watch, which in turn periodically sends data
to the CMD’s servers, which checks and validates them (and applies anonymization) and further sends
it (bulk) to the vINCI Gateway (only for the watches registered in vINCI – participants to our studies).
The Gateway further calls the I/O service, which in turn authorizes the information and multiplexes it per
registered users (remember the CMD server sends bulk data, periodically).
From the Dashboard, the user visually accesses the data such as tracks, number of steps, geofences,
alerts. For all these, the service calls the Docker container responsible for retrieving data for the currently
logged user.

2. Orbbec kit for activity monitoring in front of the TV
Here we assume the setup where an Orbbec camera is connected to a TV. In the clinical pilot, a special
room will be dedicated to this purpose. We have an Android app that runs on the Orbbec camera. This
app first requires the user to log in – the login verification is done by consulting the Cloud backend. On
the future, we investigate the possibility to employ face recognition for login at this step.

20

The application present on the TV an avatar (a virtual character) in an exercise-like stage. This avatar
instructs the user to perform and repeat certain exercise, like raising the arms to a certain level (with
visual and verbal instructions provided real-time), or the legs, or moving the posture in a certain position.
In other words, the Subject has to repeat whatever the Avatar instructs her to. Using the Orbbec camera,
we scan and extract the skeleton (posture) of the Subject in real-time, while repeating / performing the
exercises. The Skeleton extraction is done only locally on the camera. We sample the positions (at time
intervals) and we send from the camera into the Cloud only a sequence of skeleton movements (joint
positions, adnotated with timestamp), of both the Subject and the Avatar:

In the Cloud, we compare for each sample how far the position of the Subject’s joint was from the
“perfect” exercise. In theory, when doing this in-time over several times, we could remark (employing
an Anomaly Detection algorithm) when the Subject could suffer from a decline in physical conditions.
In the Web interface, the user is represented by lines and dots (the Skeleton), composing a simple
animation of how she was doing.

3. The Orrbec Kit for detecting social isolation
This one assumes we have an Orbbec camera mounted somewhere up on the ceiling (or some higher
grounds, such that the Camera has a full view of the camera). In the vINCI Pilot, this will still stay on
the TV, as we assume this to be enough to have a good impression on what’s happening in the room.
On the Orbbec camera, an Android app is running. This app takes the data (depth video data and
stereo visual data) and process it locally. We are interesting in detecting how much time the Subject
spends in isolation – in front of the TV or somewhere without interacting with others. This involves two
things: 1) recognition the user (inside a home there are multiple inhabitants, out of which we monitor
and track one particular Subject); and 2) recognition the posture of the Subject (skeleton/pose
detection). Also, the sound is a good indicator whether or not the user speaks on the phone for
example. We are interesting in: how much activity the user performs (in-home movement) and how
much he talks (or sits with no human interactions). The data is captured only local to the camera, and
from there periodically we send snapshots (the derived information, as of how much time he was sitting
reported to the whole-time interval from the last snapshot) into the Cloud. There, we analyze when the
user’s performance degrades (anomaly detection, such as when the Subject is depressed the first sign
is she tends to self-isolate, spending more time sitting instead of walking, or having less human
interactions).
In the development, we had problems in adapting the ML models into the camera, so probably the
ultima approach for this kit will be to detect/track the pose on the camera, send the skeleton posture
into the Cloud and run there the activity detection algorithm (to detect more accurate whether the

21

Subject is sitting or standing). We believe this to still be an approach which saves privacy in data, as
no personal information about the user is used in this detection.
In the Dashboard, we show an animation of how the human Subject moved at various moments, and
also activity graphs.

4. Questionnaires Kit
We assume that the user poses a PC tablet (no matter the other Kits, the tablet or a PC is a must to
exist – otherwise, the WHO questionnaire alone cannot be applied and we lose the sense of QoL
impression of the user).
Periodically, the tablet app places alerts, asking the Subject to re-fill in the questionnaire(s). The data is
sent to the Gateway, where they are saved and further sent for visualization to the Web-based
Dashboard frontend (here we use happy / sad faces to “illustrate” the result).

5. Aggregator
We have another service that, periodically (where the period is a configuration parameter, to be set
based on some analytical tests) takes all the data from the database (from the last processing
onwards), and extracts a ML model (for anomaly detection). This outputs the probability, given the data
collected by kits, that the Subject suffers a clinically-significant deterioration in his condition(s)
associated with old age (and how these conditions reflect over her subjective perception of QoL).
The dashboard includes for this another screen (independent of other kits) where we present an
evolution in data (as recorded in vINCI) and throw a potential forecasting alarm to ask the Subject to
consult the doctor when we detect anomalies in her functions (like symptoms of depressed behavior,
solitary life, severe deterioration in capabilities to perform physical activities, etc.).

Putting it all together, this is how the technology combines in the vINCI platform:

22

3. The vINCI Dashboard - UI
The VINCI UI can be separated into 2 domains: public and private.

Technical Specs for UI

A. Public domain
This refers to any pages that are accessible without requiring any login.
Such pages are: login screen and register screen.

1. Login screen
This includes a form with fields for username and password and buttons for login, register and recover
password.
The form has validation for empty username and password fields.
If login is unsuccessful, the user is presented with a corresponding error message.
Upon successful login, the user is redirected to its homepage.

2. Register screen
This includes a form with fields for first name, last name, email, password and password confirmation.
The form has validation for required fields, valid email, valid password and password matching.
Upon registering the user is sent an email with a confirmation link and is redirected to the login page
with a message to check his email.
The email link will take the user to the login page and automatically send a message to the server to
confirm the account. The user will be presented with a confirmation message, as well.

3. Recover password
From the login screen, the user can fill in just the username and request a password recovery. He will
be sent an email with a reset password link.

The link will take the user to a password reset page with a form with 2 fields: password and password
confirmation. The form has validation, similar to the registration form.
Once the password is reset, the user will be taken to the login screen and shown a confirmation
message.

B. Private domain
These are pages that require a login. The pages can be different according to the user type/role.
Available user roles:

- Patient
- Family
- Organization

23

- System administrator

1. Patient
The main page is a dashboard that includes all the users main information: devices status,
notification/alerts/events (basic and aggregated). By basic we mean per device and by aggregated we
mean information generated by aggregating data from multiple devices (eg. is the patient lazier than
normal - info from watch, show and maybe indoor cameras).
The devices page will have as main content a table for all the user’s devices. Each row will include
the device id, UUID, name, description, alerts and maybe last sent data. Each row can be clicked and
the device edited or removed. The table has sort by name and UUID and search filtering for name,
UUID and description.
Also, there will be an add button to add new devices. This will present the user with a pop-up form
where he can define the device name, description, UUID. The form has validation and the user will be
presented with error/success messages.
The account page will include info about the user: first name, last name, address, phone. This can
be editable. The form has validation and the user will be presented with error/success messages.
It will also include a user UUID that the user can share with anybody that has a Family account. Using
this UUID, a Family user can add the user to his account to monitor it.

2. Family
This is can monitor multiple Patient users.
The main page will be a dashboard that presents info about all the associated users. This can be a
grid of user ‘cards’, where each card includes: user name, user status (status of different evaluations
- can be represented with icons or smileys), user alerts/notifications/events.
The user page will be a user dashboard with more details. This can be the same dashboard as the
Patient user sees.
The account page will include info about the user: first name, last name, address, phone. This can
be editable. The form has validation and the user will be presented with error/success messages.
The family does not manage devices.

3. Organization
This can be an institution/asylum that can monitor its patients.
The main page is a dashboard that presents the latest alerts/notification/events.
The users page will have as main content a list of the organization’s users. Each row will include the
user id, UUID, name, description, number of devices (upon hover or click, a list of the user’s devices
will be shown). Each row can be clicked and the user edited or removed. The table has sort by name
and UUID and search filtering for name, UUID and description. There will also be a link/button on each
row to open the user’s dashboard and the list of devices.
Also, there will be an add button to add new users. This will present the user with a pop-up form where
he can define the user name, description. The form has validation and the user will be presented with
error/success messages. The form will have a ‘generate user account’ checkbox for the 2 cases:

24

- Patient that is not interested to have an account and no family that wants to monitor him - in
this case the email address is optional

- Patient wants to have an account and/or the family wants to monitor him - in this case the email
address is required and the user is activated only after he confirms with a link sent on his email

The devices page will have as main content a table for all the users’ devices. Each row will include
the device id, UUID, name, user name, description, alerts and maybe last sent data. Each row can be
clicked and the device edited or removed. The table has sort by name, UUID, user name and search
filtering for name, UUID, user name and description.
Also, there will be an add button to add new devices. This will present the user with a pop-up form
where he can define the device name, description, UUID and choose the associated user. The form
has validation and the user will be presented with error/success messages.
The user dashboard is the same a the dashboard of a Patient.
The account page will include info about the organization: name, address, phone. This can be
editable. The form has validation and the user will be presented with error/success messages.

4. System administrator
This user only has management capabilities. He shouldn’t have and doesn’t need to have access to
dashboards with device data, aggregated data, etc.
The organizations page will have as main content a table for all the organizations. Each row will
include the organization id, name, description, number of users and number of devices. Each row can
be clicked and the device edited or removed. The table has sort by name and search filtering for name.
The table will have links/buttons to show the list of users and devices of the selected organization.
Also, there will be an add button to add new organizations. This will present the user with a pop-up
form where he can define the organization name, description and email. The form has validation and
the user will be presented with error/success messages.
Upon adding a new organization, an email will be sent to that organization to confirm its account.
The users page will have as main content a list of all the users. Each row will include the user id,
UUID, name, description, number of devices (upon hover or click, a list of the user’s devices will be
shown), organization name. Each row can be clicked and the user edited or removed. The table has
sort by name, UUID and organization name and search filtering for name, UUID, organization name
and description. There will also be a link/button on each row to open the list of devices.
Also, there will be an add button to add new users. This will present the admin with a pop-up form
where he can define the user name, description, email (optional) and choose the associated
organization. The form has validation and the admin will be presented with error/success messages.
The devices page will have as main content a table for all the users’ devices. Each row will include
the device id, UUID, name, user name, organization name, description, alerts and maybe last sent
data. Each row can be clicked and the device edited or removed. The table has sort by name, UUID,
user name, organization name and search filtering for name, UUID, user name, organization name
and description.
Also, there will be an add button to add new devices. This will present the admin with a pop-up form
where he can define the device name, description, UUID and choose the associated user. The form
has validation and the admin will be presented with error/success messages.

25

Fig. 12. Login page.

Following these specs, the interface is now implemented using React. It is part of the Vinci gateway, the
sole entrypoint of the Vinci platform.

Fig. 13. Examples of UI views for the smartwatch component.

The gateway contains both the interface and the Java Spring microservice that manages the access to
the Vinci backend. No matter the interface requests, they will all pass through this gateway and it will
redirect them to the corresponding microservice.

26

Fig. 14. Partial interface as seen by the Subject in her account.

Everything else is also part of JHipster: interface, gateway, backend.
The interface uses the CI/CD features of GitLab and automatically built itself upon push on the master
branch. It also uses the docker registry available from GitLab to automatically bush its image and deploy
itself on the corresponding server (staging, production).
In Figure above, we can see several zones:

- Zone 1: widget containing aggregated information – the subject is ok, or we instruct her to do
something, etc. The content is to be defined currently in the project, being retrieved either from a
notification / alerts / user event table or from microservices, remains to be seen. But an initial
mock can be made with some hardcoded info. A widget creation for each device type (watch,
shoe, camera, etc.). A widget should contain at least:

o a device name
o a device type
o a current status
o a graphic / map / any other visual elements required. These are done by each person for

his microservice. Initially we put a mock, even pictures.
o a history button - opens a pop-up or a separate page with the history, depending on how

much information should be displayed
o a notifications / alerts - an icon that displays a number of unread alerts ONLY from that

device (https://material-ui.com/demos/badges/). Device alerts are stuff like connection
problems, operating errors. They will be defined more clearly further.

- Zone 2: integrating them into the user's home page (a grid / flex that displays widgets depending

on which devices the patient has in mind)

- Zone 3: fixed widget / icon in a corner of the alerts / general notifications screen (also a badge,
as above). It would include things like 'you have to do more movement', 'abnormal pulse', etc.

27

o optimized to be responsive

Bibliography
1. TODO

