
Noah Project

Tel. +39 0521905828

info@noahproject.eu

University of Parma
Parco Area Delle Scienze
181/a 40124 Parma, ITALY

www.noahproject.eu

Deliverable 1.4

Second Technology Report

Lead Partner UNITBV

Authors

Contributors: UNITBV - VSRO - UNIPR

Date: 30/12/2019

Revision 1.0

Dissemination

Level

Public

NOAH AAL Project

Documentation

Project Acronym: NOAH

Project full title: NOAH Not Alone At Home

AAL Project Number: AAL-2015-2-115

With Support of:

P.02

NOAH AAL Project

Documentation

Summary

Introduction ... 4

Part 1 - Sensors & Behavioral Analysis Module ... 5

IOT NOAH Home Sensors Kit .. 5

Behavioural Analysis.. 7

Data Analytics services ... 7

Analytics by example: Noah pilot case study .. 8

Regression models ... 8

Sensor Profiles ... 10

Conclusions of Part 1 .. 14

Part 2 – Cloud infrastructure .. 16

Factors contributing to a reserved attitude regarding the option for cloud computing 17

Cost reduction using cloud computing .. 18

1. Infrastructure as a service (IaaS) .. 19

2. Platform as a service (PaaS) .. 20

3. Software as a service (SaaS).. 23

Proposed conceptual architecture.. 27

Overall architecture .. 29

System architecture of data storage in cloud computing environments 30

Storage media for the cloud ... 30

Storage system architecture in cloud computing from the point of view of NOAH project 32

Prices we considered for proposed solution on some environments 33

Prices for the MS Azure cloud in the case of a heterogeneous environment 33

Conclusion of Part 2 .. 42

Part 3 – NOAH System architecture and technologies ... 44

P.03

NOAH AAL Project

Documentation

Server application – cloud tools version ... 47

Server application – microservices version ... 47

System security aspects .. 47

Conclusion of Part 3 .. 49

P.04

NOAH AAL Project

Documentation

Introduction

From a technological point of view, the main outcome of the NOAH project has been the

creation and the implementation of a real IoT ecosystem well-devised to provide assistive

functions to elderly that live alone. Such an ecosystem is composed of:

 the NOAH home sensors kit

 a WiFi network that provides an internet connection

 a cloud infrastructure to store and manage data

 innovative algorithms to analyze the behaviour of elderly inside their home

 an App to return information and services to caregivers

In this Deliverable, the final version of the NOAH system is described.

The document consists of three parts: the first part is dedicated to the description of the 2nd

generation of NOAH home sensors kit and to the developing of innovative algorithms to

provide behavioural analysis (these topics was mainly in charge to UNIPR); the second part

is dedicated to the developing of cloud infrastructure and caregiver App (mainly in charge to

UNITBV and VSRO).

In Part1, after a brief description of the innovation carried out in the design of the 2nd

generation of the sensors, the analytics services are introduced. Real-life data from NOAH

pilots are analysed to show the insights that the analytics system is able to provide.

Part2 is an exposition of the Cloud Infrastructure: a detailed analysis of the opportunities and

constraints related to the use of cloud is proposed.

Part3 is mainly dedicated to the description of the final architecture of the NOAH back-end

system (Cloud, Data Base, Services for Apps, etc...).

P.05

NOAH AAL Project

Documentation

Part 1 - Sensors & Behavioral Analysis Module

IOT NOAH Home Sensors Kit

The NOAH sensor kit consists of a set of five Wi-Fi connected, batteries supplied, devices

that have to install in the user’s home. The set includes the following elements:

 Passive Infra-Red (PIR) sensors for motion detection, suitable for tracing room

occupancy. Such sensors are deployed in user’s home by fixing them to a wall in the

environment where motion needs to be captured

 Magnetic contact sensors, useful for monitoring open/close states of different

objects. For example, interactions with doors, drawers and medical cabinets can be

easily detected with such sensors.

 Bed occupancy sensor, useful in tracing sleeping patterns; detection of presence is

achieved by a pressure-sensitive resistive pad, usually placed under the mattress.

Such signal is read by the sensor module, attached to the bed frame.

 Chair occupancy sensor, to gather information on how much time and when a user

sits on a chair/armchair/sofa; physical sensing technology is the same as for the bed

occupancy sensor.

 Toilet presence sensor, specifically developed to keep track of daily toilet use. The

sensing element is an active IR sensor with an IR illuminator and a photo-detector:

this setup guarantees ranging capability and can be much more selective for close

interactions detection, with respect to a PIR. Indeed, the sensor is fixed in close

proximity to the toilet.

At the end of 2017, a very first generation of the NOAH system was tested. It was based on

TI-CC3200 SoC (a System on Chip equipped with an ARM Cortex-M4 microprocessor and a

IEEE 802.11b/g/n network processor).

The sensors exploit MQTT communication protocol to implement a direct connect to the

cloud. An “easy to install” procedure was developed, using WPS (Wi-Fi Protected Setup)

configuration protocol, to simplify the installation phase at user’s home.

P.06

NOAH AAL Project

Documentation

Test activities of first generation of IoT sensors, carried out by UNIPR and MOBILAB, had

highlighted a series of technical issues, like as:

 anomalous data transmission

 sensor disconnection from the Wi-Fi network

 abnormal batteries consumption

 non-repeatable behaviour

To solve these problems, a strong effort and several mounts of works was dedicated to

produce a second generation of NOAH home sensors kit.

The second generation of IoT sensors is based on a new Wi-Fi SoC Module: TI-CC3220

SoC (an evolution of the CC3200 used for the first generation). Furthermore, a pre-certified

module available (with PCB antenna) was adopted. New features for security are

embedded, as: support for SSL/TLS and Cyphered File System and Secure OTA (Over-the-

Air) updates are enabled.

The sensors have been re-designed to improve the user experience by:

 A thinner plastic case with external access for batteries and polarity reversal

protection

 A dedicated PCB designed to improve the reliability

 A multicolour led for information signalling

 More effective buttons available for specific functions

 The use of an external power supply is supported

Power consumption optimization strategy have been implemented to improve the batteries

consumption. For example, data transmission policy changed: information are sent at

intervals of about an hour exploiting a dedicated Non-Volatile Memory, available to store

data before sending. Sensors try to retrieve the current date and time using an external

internet accessible NTP server using the SNTP protocol. An automatic reset (“factory state”)

procedure is available to restore the functionality of the devices in case of malfunction.

Besides, a Super-Capacitors was added to the electronic circuit to ensure a better power

stability even in case of peak consumption.

P.07

NOAH AAL Project

Documentation

Behavioural Analysis

The Behavioural Analysis (BA) module takes care of extracting meaningful insights from raw

data gathered by the five home sensors (installed at user’s home and above descripted) and

stored in the relative DataBase (DB).

Data stemming from field sensors are ingested into the cloud by a MQTT broker instance.

Meanwhile, a Node Red module takes care of parsing such data, inserting them into a

MySQL DB for further processing.

The Behavioural Analysis (BA) module is, instead, exposed as a REST web service, serving

requests over secure HTTPS connections.

Overall, the BA module performs the following tasks:

 Request parsing. Each request is parsed to extract the type of analysis to perform,

along with the associated parameters.

 Data retrieval from the MySQL database

 Data cleaning and pre-processing. Raw data are inspected to remove potential

errors and transformed to a richer representation (sensor event matching and

filtering), better suited for further processing.

 Processing. The transformed data are exploited to infer relevant information and,

possibly, make prediction on future states

 Response serving through HTTPS protocol, using JSON encoding.

 In the following, the analytics services are presented, together with some real case

studies from installed NOAH pilots.

Data Analytics services

The primary purpose of all analytics services developed for the NOAH project is to model the

usual user’s behaviours and to detect new or deviating observations. The following services

were implemented:

P.08

NOAH AAL Project

Documentation

 Regression analyses with outliers detection. The purpose of this kind of model is to

explain and interpret data by means of given factors, rather than posing the basis for

future predictions. In this sense, the analysis is explanatory and retrospective: it can

be used to detect if some effects are truly influencing the data (e.g. longitudinal or

abrupt trends) and if some observations cannot be explained properly by the

accounted factors (outliers). The factors considered in the NOAH project are:

o baseline: the expected, average quantity, if no other effects are present

o abrupt trend, i.e. presence of a statistically significant deviation in the last 5

days.

o intermediate period, before the abrupt trend, that allows to account for a

past abrupt trend, without raising the baseline too much. This factor is not

used for user notifications.

o linear trend, to model long term trends over the whole observation window

(30 days).

 Sensor profiles. Such curves model the expected user-sensor interaction throughout

the day. In other words, they provide a daily insight on the user’s habits by modeling

how likely it is to see the sensor triggered at each time of the day. Such curves may

be used to detect changes in patterns of use, by comparing different periods and

testing for statistically significant deviations. Another application is as features to

assess similarity between users’ patterns.

All models can be automatically applied to each sensor type: the analytics pipeline handles

all steps of data retrieval and cleaning. This is particularly important, since spurious or

missing activations are likely to occur. Exceptions and errors during model computation are

handled carefully to prevent service blocking.

Analytics by example: Noah pilot case study

Regression models

Regression models are usually computed once per day, and the returned information is

encoded in a JSON response. In Figure 1, we represent daily outputs from the BA module in

a graphical way. In particular, the daily hours spent in bed are studied, considering the

previously listed factors.

Each data point in the plot is colour coded, depending on which factor is triggered (magenta

for abrupt trends, orange for long term ones) or whether the data point is considered an

P.09

NOAH AAL Project

Documentation

anomaly (crimson) or a normal observation (light blue). Please note that each point

classification is supported by the previous 30 days: therefore, the first point in the graph is

the output of the analysis of the preceding days, not shown. It can be noticed that the model

spots 3 interesting points: two of them represent recent, abrupt changes in the behavior (last

5 days, with respect to baseline, accounting for the other factors), whereas the third one is

labeled as anomaly, since it cannot be modeled well by the selected factors.

Figure 1 Daily regression model outputs for bed presence

Errore. L'origine riferimento non è stata trovata., on the other hand, shows the output of

daily regression modeling of toilet visits: the same consideration apply to the previous case,

for interpretation. However, in this case, the quantity being analyzed is no longer a real-

valued observed value, but rather a discrete one, namely the number of daily visits. An

increasing trend is detected at the figure’s right end.

P.10

NOAH AAL Project

Documentation

Figure 2 Daily regression model outputs for bed presence

Figure 3 Daily profiles for bed and chair sensors

Sensor Profiles

As mentioned, sensor profiles model the probability of finding the sensor triggered

throughout the day. In

, an example is given, where a chair and a bed sensor are modeled. In such plot, the solid

lines represent the expected probability of being triggered, whereas the shaded area

represent the 95% confidence intervals of such estimates.

P.11

NOAH AAL Project

Documentation

It can be noticed that the chair and bed sensors are mainly active during the evening and

night, respectively. Furthermore, tight confidence interval boundaries reveal a stable,

repetitive habit of the user.

Figure 4 Different sensor profiles for a single resident

P.12

NOAH AAL Project

Documentation

Figure 5 Different chair sensor profiles depending on intensity of use

On the other hand, Figure 4 shows a more complex set of patterns, involving three different

sensors, namely the chair, Pir and Bed; it can be noticed that relatively high peaks indicate a

more stable behaviour. For example, the Chair sensor is likely to be activated after lunch

and during the evening (user reports to be used to fall asleep on the chair before going to

bed). At the same time, Pir behaviour is quite expressive; in this pilot the motion sensor is

located inside the kitchen: activations for breakfast, lunch and meal preparation are quite

apparent. Bed sensor, on the other hand is very stable, indicating a regular sleep routine

(user goes to bed between 23:30 UTC and 00:00 UTC).

It is also possible to investigate how different profiles are generated, depending on the

intensity of interaction with the sensor. For example, Figure 5 shows different chair use

patterns, for moderate and high chair presence throughout the day. In particular, higher chair

use is mainly concentrated in the afternoon: such difference, according to the user, is due to

recurrent and habitual visits received by her friends. Another possible use of sensor profile is

to see whether the sensor activation patterns differ between different time periods.

In this sense, Figure 6 represents an interesting scenario: the user under study exhibited

different behaviours throughout the NOAH project: between July and mid-August, he

P.13

NOAH AAL Project

Documentation

occasionally spent time in bed during the morning, whereas in the next two months he

mainly rested just a few hours before lunch. Such difference is significant, as highlighted by

non-overlapping confidence intervals. On the other hand, from October on, the user did not

spend any time in bed during the day, this highlighting a further behavioural change.

Figure 6 Different sensor profile modes for the bed sensor

P.14

NOAH AAL Project

Documentation

Conclusions of Part 1

This document presents the evolution of IoT sensors and the development of the BAM data-

analytics services of the NOAH platform. The system gathers data from many different

sources, including:

 Bed presence sensor

 Chair presence sensor

 Toilet sensor

 PIR motion sensor

 Magnetic contact (e.g. for medicine cabinet)

A second generation of NOAH home sensors kit was designed, produced and deployed in

the pilot installation made in Belgium, Italy and Romania.

Sensors has been redesigned to improve the user experience. Among the various

improvements we note:

 the new case now has external access for batteries with polarity reversal protection

 there is a multicolour led for information signalling

 there are some user buttons available for specific functions (like as “hard reset”)

 the power consumption has been optimized (also changing data transmission policy)

 the inclusion of sensors in the network is made using WPS button, as before, and a

Python application, to be installed on a PC already connected to the same wi-fi

network, is available to receive the notification of inclusion in wi-fi network, with the

information about the just connected sensor, in particular, its ID to be used for

sensor association to the house/user

 the sensor ID must be associated with the user or house on the server side, to

ensure that the information is correctly associated, for data analysis

 every sensor signals its current status and recorded events once every hour (more

or less) to save energy. The signalling time is not the same for all the sensors, to try

to avoid server congestion

 the communication via MQTT is now protected with SSL, so the CA certificate must

be installed in all the sensors during first programming. The username and

password login are used for identification and authorization, this information is the

same for all sensors

P.15

NOAH AAL Project

Documentation

The second generation of NOAH home sensors kit has demonstrated reliability and a

sustainable power consumption.

Sensors installed in users’ home have provided raw data with continuity. Such data are then

used to provide quantitative information about:

 Trend analysis & anomaly detection (regression analysis)

 Routine/habits modelling and deviation assessment (activity curves)

The services are implemented using cloud-computing frameworks, from data ingestion up to

device management and advanced data mining. Services are resilient and can handle

common errors which happens in real-world data, such as missing data, incorrect readings

and so on. All analytics services are exposed as web-services over secure HTTPS links and

require a username and password to be served.

Finally, real-pilot data were analysed to showcase the analytics platform capabilities. Such

services are able to produce summarized information (e.g. trend detection, incipient

behaviour change in sensor traces), which can be further refined before being presented to

the end user.

Furthermore, depending on the type of end-user, such information can be customized: for

example, a formal care giver may find useful being notified by the system about incipient

trends or on change in specific sensor patterns (e.g. bed/toilet), whereas the elderly person

may find more useful to have just a simple indicator that everything is going all right or

whether there are some problems with a specific behaviour. Such information can be easily

provided through the customized end-user app.

P.16

NOAH AAL Project

Documentation

Part 2 – Cloud infrastructure

From a conceptual point of view, at the technical level we can identify the following areas of

interest to be considered in order to develop the project:

- cloud computing, with techniques, technologies, methodologies and specificities

(compared to a real, physical environment):

a) available virtualization systems, with their advantages and disadvantages

b) commonly used hypervisors, with their advantages and disadvantages

c) system implementation costs of cloud computing

d) maintenance

e) aspects to be considered when using a cloud computing environment

f) aspects to be considered in terms of security

g) environmental concerns

h) elasticity and scalability

- the specific of developing applications for the cloud

- remote control of mobile devices (used to transfer data and to run the applications)

and their security

Cloud computing gives several options to access the desired services to the users. For this

purpose, the user has a graphical user interface that can provide:

1. Self-service on request. Through this feature there are provided on demand IT

services, with no intervention from any provider and without the user being required to be

familiar with the technologies behind its orders.

2. Permanent and extended access to the network. This feature is based on the

provision of IT services anytime and anywhere, by the devices chosen by the user.

3. The facility to use of a group of virtualized resources. The providers supply their

customers with scalable services (storing, processing or bandwidth), based on contracts

(SLA – service level agreements) according to base system loading and usage

P.17

NOAH AAL Project

Documentation

characteristics. Users can change their SLAs without limitations on physical and virtual

resources.

4. Rapid elasticity of resources. Elasticity features involve dynamic provisioning of

services and users self-serving on demand, with the possibility of amending the contract for

services delivery without having to contact the service provider. This is known as scalable

provisioning of services, or the ability to offer scalable services. Self-provisioning allows the

customers to request a range of services (computing power, storage media, applications,

processes, etc) without having to undergo a too cumbersome procedure, thus eliminating

many of the expected delays. The elasticity allows users to automatically get extra work

space in the cloud or other services.

5. Metering services. IT services can be measured in terms of their use and quantified

to establish the costs charged to the users. Payment for services is based on pricing models

that consider the load requirements of the basic system and their usage mode, being

reflected in the SLA which provides (among others) the QoS - quality of services that are

offered. Being flexible, the price models (tariffs) allow, for example, the simple rental of

hardware and software resources needed, so the users are not forced to purchase them.

Factors contributing to a reserved attitude

regarding the option for cloud computing

1. Maturity – it is not sure whether the technology is ready for implementation at the

production level.

2. Standards - are still in the development phase.

3. Security concerns – as many users share the same resources.

4. Interoperability - there are several manufacturers using different techniques and

functions to implement cloud computing. The question arises whether the code written by a

user can be used regardless of the cloud computing provider, or if a smooth transition can

be done from one provider to another.

5. Privacy Control - is different from the traditional IT approach. In most cases,

organizations want to retain control of their data. This becomes even more sensitive when

using a public cloud.

Because of these issues, we can say that the success factors for adopting a ready to-use

cloud computing infrastructure are:

P.18

NOAH AAL Project

Documentation

- infrastructure based on open standards

- advanced virtualization and automation

- common processes and components

- advanced security and resilience

Cost reduction using cloud computing

Virtualization + Energetic efficiency + Standardization + Automation = Cost reduction

Cloud computing offers several environmental benefits through:

1. reducing the number of hardware components required to run the applications

(compared with the case of internal data centre of the organizations) by reducing the energy

required for operation and cooling of the components.

2. consolidation of these systems ((fewer physical components) in remote centres can

lead to their better management in groups

3. cloud computing promotes working "from home", with printing remotely, transferring

files remotely - helping to reduce the workspace required for offices and their furniture, to

reduce the cost of cleaning, and those related to commuting to work, thus reducing carbon

emissions.

Costs

The list of possible costs to be taken into account when estimations are made, before all the

partners should agree on the final solution:

- Costs caused by the storage environment – they can be very high depending on the

type of application (e.g. messaging or data analytics).

- Costs of the networking technology. Transfer into the cloud of a web applications

(e.g. messaging or collaborative) should relief strain of own network but could lead to a

significant increase in bandwidth requirements for the data transfer.

- Costs related to the backup or archiving of data - savings in terms of backing up

data depend on the strategy of their migration into the cloud. The same is true for data

archiving. First, it must be determined who is responsible for backups and archives (the

client or the service provider). Secondly, it is to consider whether certain data should be

backed-up locally.

P.19

NOAH AAL Project

Documentation

- Costs due to recovery of data in case of a disaster. Theoretically, the service offered

in the cloud has its own possibilities for data recovery, but if this is possible and how much

should it cost has to be discussed with the service provider. For example, it must be seen if

the cloud service provider has a redundant system, so that in the case of a problematic

power supply, service providing could continue from another location. A solution that can be

considered could be the ensuring of backups or archives by another provider, specialized in

services of this kind.

- Costs due to maintenance of the software that works in the data centre. This is quite

hard to evaluate, especially if product licenses are part of a group of licenses covering more

applications, or if the app works with other applications. In such situations it is very difficult to

assess what the customer is truly consuming.

- Costs due to the platform. Some applications run only in certain specific operating

environments, which should be considered in determining the total costs.

- Staff costs – they are charged based on daily costs of operation and application

management. It has to be decided whether these costs can be fully transferred to the service

provider, or if own dedicated staff is still needed to manage and monitor the services.

One way to estimate costs needs firstly the examination in detail of the expected loads, then

the use of a helpful tool for calculating the real costs of these loads in the cloud.

When opting for a cloud computing solution, it has to be seen which of the applications to be

transferred into this environment provides a smooth transition and the best return on

investment. Assessing the potential for such an application deployment is the key to carrying

out such a choice. Some loads are dynamic and unpredictable, which makes sense to spend

more to get the required functionality only for a short period of time. For this reason it is

important to identify the apps that have this behaviour, because such applications are those

that are best suited for such migration. There are on the market a series of tools that can be

used to measure the load of an application or a service that is provided via a cloud

computing. Most of these products use spreadsheets in which data are introduced and that

can provide as output scores on which it can be concluded about the effort to be made by

each partner in the NOAH project regarding the investments needed for migrating

applications to the cloud computing environment, and the benefits from this approach.

Types of architectures for service provisioning in cloud computing environments

1. Infrastructure as a service (IaaS)

The infrastructure provider grants access to computing infrastructure available as a service.

The infrastructure provider manages a group of computing resources and uses virtualization

P.20

NOAH AAL Project

Documentation

to dynamically resize and transmits the required resources to the userServices to be used

based on IaaS:

Virtualized infrastructure

- servers, storage media, networks

- hosted cloud services can be dynamically provisioned

The users (NOAH project partners) would rent processing resources, memory, storage

devices and network resources that are provisioned in the cloud.

 IaaS can be provisioned either in a public cloud or in a private cloud. In a public cloud, the

IaaS user only needs to connect using an authentication mechanism in order to access

resources. When the user no longer needs them, their release (”de-provisioning”) is

achieved.

This architecture is well suited to use own tools and software to create applications.

Using IaaS does not grant control to a basic infrastructure but control is given over the

operating system, storage media, applications and, at some level, over the network

components.

Conclusion.

IaaS cloud computing system type will be chosen for the beginning stage when they have to

be organized activities for development of applications, to integrate the use of sensors and

connections to mobile devices.

2. Platform as a service (PaaS)

Such a platform allows the partners of the NOAH project to develop, test, and deploy web

applications on any infrastructure made available by a supplier. In other words, PaaS allows

the use of seemingly infinite computing resources within a cloud computing infrastructure.

The illusion of infinite resources use is given by the fact that the cloud computing system can

be expanded to provide even more resources than would be required.

In this model of service delivery, mediating computing platforms (middleware) and stack

solutions are available as a service.

Services to be used in offering applications via PaaS:

- data bases

P.21

NOAH AAL Project

Documentation

- messaging

- applications server

- management of the work-processes

- Java execution environment

- Web 2.0 execution environment

Size, configuration and number of hardware components necessary to run the application

are not known by those who use it. PaaS providers aim is to create a repeatable and

abstract process in order to develop and implement high-quality applications.

Using a PaaS in a public environment will be very different from a traditional platform

development and implementation. So:

- Resources are provided in the form of software into the PaaS platform. PaaS

environment is hosted so that another actor is granted responsibility for the performance and

updating of that software.

- Development and delivery of the services are available in the cloud and not on a

particular system.

- Mediating platforms and services are not installed or configured as an integral part

of the PaaS platform

- Because PaaS is related to IaaS services, it provides a consistent way (DevOps) of

managing and optimizing applications, from development to implementation

When performing a PaaS service delivery, it is recommended to take into account the

following:

- Providing developers with a programming environment. For example, there can be

provided either open source programming environments, such as Eclipse, or commercial

and programming environments such as Visual Studio or Rational platforms.

- Ease of use. PaaS should offer a range of helpful tools to assist programmers such

as: various reusable parts created to support the developers, instruments to implement

easy-to-use graphic user interfaces, graphical tools for programming, and support for

programming environments. It is recommended to implement the iterative development

model.

- Providing tools for modelling work processes by which it can also be accomplished

the practical application.

P.22

NOAH AAL Project

Documentation

- Ensuring availability. The platform chosen must be accessible and available

anytime, anywhere.

- Ensuring scalability. The offered platform must include several elements of

automation that will produce an elastic medium able to handle the correct loading of the

applications it hosts.

- Providing security. To tackle security threats effectively, the platform should consider

a number of issues, such as: SQL Injection, Denial of Service, data traffic encryption during

the applications implementation. Support has to be available in order to enable access to

multiple applications on the same platform, or on other platforms in the cloud, using a single

user account, once – “single sign-on”.

- Incorporation, integration and collaboration between existing applications on the

platform.

- Independence of the platform from the infrastructure that it is deployed on, allowing

later move of applications from one infrastructure to another.

- Providing tools for portability. When moving an application from one platform to

another, tools must exist to enable seamless data migration (including tools for data import /

export).

- Providing tools needed to create and configure applications so that they can

communicate (with the platforms) in order to fulfill their specific requirements.

For PaaS architectures, reusable templates are available to ease the creating of platforms

and their configuration. A design template can be defined as a solution that can be reused in

other similar situations in a given context and which has proven its correct operation – such

a template is identified by a name. The middleware components based on templates are

optimized to be able to automatically assemble software.

They are grouped in products and execution environments that allow their automatic

assembly in order to dynamically provide different services. For example, IBM offers a series

of products, branded as WebSphere that can be used as templates and implemented into

platforms.

UTBV owns the licenses for a range of templates and programming environments, under

Rational or WebSphere.

Also UTBV can provide Microsoft templates – available under own licenses.

P.23

NOAH AAL Project

Documentation

Conclusion

Due to high costs, and increased programming efforts, system type PaaS cloud computing

will be chosen for the phase of development, testing and maintenance of applications.

3. Software as a service (SaaS)

SaaS architecture:

Services to be used in offering applications via PaaS:

- Collaboration

- Work processes

- Applications to be developed

- Discovery of data with similarities and their transmission

In the SaaS model, the software provider is responsible for creating, updating and

maintaining it, and all the licensing issues. Customers (end users) can rent the software

according to usage patterns, or buy an access ticket containing one separate license for

each individual who uses the product.

When using this model, the users access just the service itself and not the platform or

infrastructure used to support the service. The service is usually accessed as a web

application or a web service built into an app – these embedded services are invoked with

the help of web API-s (application programming interfaces).

SaaS applications can be divided into two categories: critical services that are absolutely

necessary for the good operation of applications and consumer oriented services. Both

services are sold on a registration base and payment is only for the consumed resources.

However, these two categories seem to have limited usability and more are likely to be

added. For example, there may be services providing shared resources or services that

partners in the NOAH project do not want in their portfolio and would prefer to be performed

by someone from the outside, in order to reduce costs. Another example is the service using

external infrastructure for carrying out sporadic activities within the project (such as, distance

learning for trained personnel). Apart from consumer oriented services, all other services are

profitable only if they are addressed to a large number of users, since there must be covered

the costs of infrastructure and the related costs or performance or taxation. All these cost

are to be covered by the project in an optimal way.

P.24

NOAH AAL Project

Documentation

In order to configure the system to operate normally it is recommended to achieve the best

possible concordance between multi-tenancy and virtualization. By multi-tenancy, one

instance of the application running on a SaaS platform is used by several partners who

lease it. In a multi-tenant data architecture, data and configurations are virtually partitioned

to allow each partner to work with an instance. By consolidating IT resources in a single

operation, multi-tenancy offers the great advantage of reducing costs; multi-tenancy may not

be effective if there are required large resources for storage and processing in applications

used by a small number of customers. Another disadvantage of multi-tenancy is that

applications running this way require a special programming, in addition to those running in

usual environments. Virtualization of servers in SaaS architectures is much more than a

simple virtual partitioning of data and configuration, as is the case of usual multi-tenancy.

One of the biggest advantages offered by virtualization is to increase capacity without

additional costs of a system, due to dynamic adjustment of the number of logic resources,

including storage and databases. But a major problem that can arise is that of virtual servers

that cannot be transferred between different virtual environments due to their incompatibility

with new virtual environments.

The problem is due to virtualization environments producers, offering virtualization solutions

that do not allow interoperability between them, caused by the different approaches of

virtualization technology. Therefore, the situation must be avoided by developing an

application in a cloud computing environment of and transferring it to another cloud or using

applications that must collaborate from different clouds. In such a situation it may be

followed the scenario described below: if two SaaS applications should collaborate during

operation, one of them using a standard API originated from a manufacturer, and the other

one using a different API originated from another manufacturer, they will not work without

some adaptations like the introduction of means of communication between the cloud

computing media, data reformatting, or even changing the application logic. For the moment,

there are no standards for APIs related to data import or export, but there are many other

possibilities in this domain.

Synopsis

For the SaaS platforms there are recommended applications that have a service-oriented

architecture, in order to enable applications to communicate with each other. This is

necessary because the use of services is less expensive than the use of virtual machines.

Each software service can act either as a provider or as a recipient of services. SaaS

service provider offers its functionality to other applications using public intermediation

software components. Recipients use data and functionalities offered by other services. Both

service types offer savings in terms of scalability, regarding the implementation and

management of SaaS. Web services are usually completely independent functional units, no

matter how many resources are needed. In order to avoid that resources used for both

P.25

NOAH AAL Project

Documentation

service providers and service users become oversized (in case of increased or decreased

capacity) there are created web services related to the SaaS applications. This connection

affects services independence, and if the web service receives an alert of exceeding the

allowed values, connections can be lost to particular services that would be needed in the

following.

 Choosing a SaaS solution offers the opportunity to reduce costs for the NOAH project

applications, as these applications should be used only on request - being no longer

necessary to purchase licenses for each device that uses these applications. Cost savings

are greater because, according to statistics, most computer systems stay idle – unused

about 70% of the time. Using a SaaS environment, applications are effectively used 100% of

the time, as the renting of licenses is done only during the time they are used.

Conclusion.

SaaS cloud computing system will be chosen for the final application offering to the users

who will access it from their mobile devices.

CONCLUSIONS REGARDING THE ARCHITECTURES FOR SERVICE PROVISIONING IN

CLOUD COMPUTING ENVIRONMENTS

IaaS is usually platform independent. The IaaS model has some advantages, such as:

reducing costs with hardware resources and human resources, reducing risks in terms of

RoI (return of investment), providing computing resources needed without requiring

investment in physical infrastructure (no purchase of servers or other equipment is needed

for applications running), rapid scalability achieved automatically. Among the disadvantages

they can be mentioned: efficiency and productivity depend largely on the capabilities

provided by the manufacturer, possible long-term higher costs, reduced security caused by

sharing of the same resources. This model is not recommended when CapEx (capital

expenditure) is greater than OpEx (operational expenditure).

The PaaS model is particularly addressing the issues of licenses acquisition, ensuring the

consumers with the hardware and software infrastructure they need. The model is very

suitable for project managers who use Agile methods. With this model of service delivery in

the cloud a stack of solutions is offered, with the advantage of a correct versioning. The

main problem that can occur when using such a model is that of security caused by

centralization.

The SaaS model is offering an application that can be used by end users via a GUI

(graphical user interface) that can be accessed also from computers with low resources

(”thin clients”). Communication is done via application programming interfaces (APIs) and

services have a very low degree of independence. Apps have a client-server architecture,

working in a collaborative environment. Nevertheless, choosing such a model avoids

P.26

NOAH AAL Project

Documentation

significant expenditure with applications development and software resources, reducing

investment risks and eliminating costs related to updating apps. Like the other models,

centralization requires additional security measures or even the adoption of a new paradigm

for the services.

IaaS, PaaS and SaaS architectures could be used together - in such a case, the customer

has access to all the resources offered by this combination of models. For example, the

SaaS model (offering only the final application to the customer) can be used in combination

with PaaS or IaaS, with user access also to the platform and respectively to the

infrastructure. From this point of view, SaaS is the most restrictive because nothing more

can be used but only the respective application. If PaaS is added, one can develop, test, and

deploy the application in the real operation environment, obtaining a more precise control

over the application operation, and if IaaS is also added, one can add or remove physical

system resources, such as servers, storage media or firewalls.

As discussed above, it is recommended, both in terms of cost and in terms of programming

efforts the adoption of a separate solution for each stage of development in NOAH:

1. IaaS will be chosen for the beginning stage when they have to be organized activities for

the development of applications, the integration of sensors and the connections to mobile

devices.

2. PaaS will be chosen for the phase of development, testing and maintenance of

applications.

3. SaaS will be chosen to offer the complete final application to the users who will access it

from their mobile devices.

P.27

NOAH AAL Project

Documentation

Proposed conceptual architecture

Besides generic service models for cloud computing introduced above, there are other

service models on the market, focusing on dedicated users a segment – also such services

could be considered in the NOAH project if they look to be more helpful or would have a

lower cost:

1. Data services. Own representations can be accomplished, based on data from the

available platform. Using such a service assumes to have some data previously stored in the

cloud.

2. Testing services. Allowing developers to test their applications in real operating

environments. IBM offers comprehensive services combining programming and testing,

based on the Rational platform, and known as Cloud Application Management Solutions and

Capabilities; Microsoft offers a platform based on Visual Studio, known as Cloud-based

Load Testing with Team Foundation Service.

3. Integration Services. This model provides integration of data with different sources

and of the applications using these data. Based on cloud platforms and services, an

organization can be connected extensively, enable it to pool IT internal systems and

applications with one or more external remote IT environments.

The platform will be implemented as a solution for mobile computing in an cloud computing

environment (figure in the next slide). It will allow developers to import and distribute directly

applications made in the company making them available to the users through distributing

applications by following steps:

1. Developing applications in a dedicated environment for building applications that can

be used on mobile devices

2. Transfer applications within the distribution application

3. Application distribution to the users

P.28

NOAH AAL Project

Documentation

P.29

NOAH AAL Project

Documentation

Overall architecture

In conclusion, we propose an overall architecture presented below:

P.30

NOAH AAL Project

Documentation

System architecture of data storage in cloud

computing environments

The data acquired from the sensors must be kept in secure storage media which can be

scaled depending on the load. Load is given by the number of users, the number of sensors

that generate data to be acquired and the frequency of data acquisition.

Because data are some of the most important assets of the entire system, they must be kept

under maximum security. Therefore, it must be chosen the best solution for storage. Given

that running is carried out under a cloud, it could be decided to store data also in a cloud

computing environment.

Disks that store data in a cloud computing environment can be connected directly to servers

and managed individually through a global distributed file system, or can be part of a

network of devices, called Network Attached Storage (NAS) connected directly to a resource

group called Switching fabric.

The hierarchy of storage in a cloud computing environment, in terms of a programmer, is the

following: a server is made up of a number of processors with multiple cores, a local memory

shared coherently and a number of disks attached directly to the server.

Storing in a cloud computing n environment of should be regarded as a service provided to

users, regardless of delivery model (public, private or hybrid).

For storage one can use a number of choices, from private storage networks (Storage Area

Networks - SAN) to NAS type networks that can be hosted either locally or at other cloud

service providers. It is also possible to intend keeping data in other locations, on systems of

cloud computing, where the storage is seen as a service that can be paid based on the

amount of storage space used. Portable electronic devices can access stored data via the

Internet without having to know specific details about the type or location of the storage

media used.

The services offered have the ability to allow the storage or retrieval of data based on the

behavior of computational processes that are separated from the respective storage service.

A storage cloud can be used in combination with a computing cloud, with a private cloud, or

as a storage medium for a computing device.

Storage media for the cloud

This is the name commonly used for the storage media implemented in cloud computing, for

the provisioning of services offered to users. For example, in order to create a virtual

P.31

NOAH AAL Project

Documentation

machine it is allocated a certain amount of storage. This storage space is provisioned in the

process of creating the virtual machine to support the operating system and execution

environment of that instance and it is not provided by a dedicated storage cloud (although it

could be also provisioned based on the same infrastructure used for the storage cloud).

The advantages of storage in a cloud computing environment

Functionality Traditional
environment

Cloud computing environment

Provisioning of storage In weeks In minutes

Continuous access to data Centralized Localized – from anywhere, at anytime

Storage capacity Fixed Dynamic (elastic)

Reduced administration costs Down to 50%

Reduced electricity costs Down to 36%

Increased usage of storage Up to 50% Up to 90%

P.32

NOAH AAL Project

Documentation

Storage system architecture in cloud computing from the point of

view of NOAH project

In the next figure we present the storage system architecture in cloud computing from the

point of view of NOAH project:

P.33

NOAH AAL Project

Documentation

Prices we considered for proposed solution on

some environments

Prices for the MS Azure cloud in the case of a heterogeneous

environment

1. Prices for resources

Processor, / RAM capacity / number of disks / hard disk capacity:

A0 Standard: 1 Core, 0,75 GB, 1 disk, 1x500 IOPs, load balancing 12,55 euro/month

A1 Standard: 1 Core, 1,75 GB, 2 disks, 2x500 IOPs, load balancing 37,64 euro/month

A2 Standard: 2 Cores, 3,5 GB, 4 disks, 4x500 IOPs, load balancing 75,29 euro/month

A3 Standard: 4 Cores, 7 GB, 8 disks, 8x500 IOPs, load balancing 150,58 euro/month

A4 Standard: 8 Cores, 14 GB, 16 disks, 16x500 IOPs, load balancing 301,16 euro/month

A5 Standard: 2 Cores, 14 GB, 4 disks, 4x500 IOPs, load balancing 169,40 euro/month

DS1_V2 Standard: 1 Core, 3,5 GB, 2 disks, 3200 IOPs, 7 GB local SSD, load balancing,

Premium disk support 42,66 euro/month

DS2_V2 Standard: 2 Cores, 7GB, 4 disks, 6400 IOPs, 14 GB local SSD, load balancing,

Premium disk support 85,33 euro/month

DS3_V2 Standard: 4 Cores, 14GB, 8 disks, 12800 IOPs, 28 GB local SSD, load balancing,

Premium disk support 170,66 euro/month

DS4_V2 Standard: 8 Cores, 28GB, 16 disks, 25600 IOPs, 56 GB local SSD, load balancing,

Premium disk support 341,31 euro/month

DS5_V2 Standard: 16 Cores, 56GB, 32 disks, 51200 IOPs, 112 GB local SSD, load

balancing, Premium disk support 682,00 euro/month

DS11_V2 Standard: 2 Cores, 14GB, 4 disks, 6400 IOPs, 28 GB local SSD, load balancing,

Premium disk support 119,21 euro/month

P.34

NOAH AAL Project

Documentation

DS12_V2 Standard: 4 Cores, 28GB, 8 disks, 12800 IOPs, 56 GB local SSD, load balancing,

Premium disk support 237,79 euro/month

DS13_V2 Standard: 8 Cores, 56GB, 16 disks, 25600 IOPs, 112 GB local SSD, load

balancing, Premium disk support 476,21 euro/month

DS14_V2 Standard: 16 Cores, 112GB, 32 disks, 50000 IOPs, 224 GB local SSD, load

balancing, Premium disk support 952,42 euro/month

DS15_V2 Standard: 20 Cores, 140GB, 40 disks, 62500 IOPs, 280 GB local SSD, load

balancing, Premium disk support 1190,21 euro/month

DS1 Standard: 1 Core, 3,5GB, 2 disks, 3200 IOPs, 7 GB local SSD, load balancing,

Premium disk support 52,70 euro/month

DS2 Standard: 2 Cores, 7GB, 4 disks, 6400 IOPs, 14 GB local SSD, load balancing,

Premium disk support 105,41 euro/month

DS3 Standard: 4 Cores, 14GB, 8 disks, 12800 IOPs, 28 GB local SSD, load balancing,

Premium disk support 210,81 euro/month

DS4 Standard: 8 Cores, 28GB, 16 disks, 25600 IOPs, 56 GB local SSD, load balancing,

Premium disk support 421,62 euro/month

DS11 Standard: 2 Cores, 14GB, 4 disks, 6400 IOPs, 28 GB local SSD, load balancing,

Premium disk support 140,54 euro/month

DS12 Standard: 4 Cores, 28GB, 8 disks, 12800 IOPs, 56 GB local SSD, load balancing,

Premium disk support 281,71 euro/month

DS13 Standard: 8 Cores, 56GB, 16 disks, 25600 IOPs, 112 GB local SSD, load balancing,

Premium disk support 562,79 euro/month

DS14 Standard: 16 Cores, 112GB, 32 disks, 50000 IOPs, 224 GB local SSD, load

balancing, Premium disk support 1109,90 euro/month

D1_V2 Standard: 1 Core, 3,5GB, 2 disks, 2x500 IOPs, 50 GB local SSD, load balancing,

42,66 euro/month

D2_V2 Standard: 2 Cores, 7GB, 4 disks, 4x500 IOPs, 100 GB local SSD, load balancing,

85,33 euro/month

D3_V2 Standard: 4 Cores, 14GB, 8 disks, 8x500 IOPs, 200 GB local SSD, load balancing,

170,66 euro/month

P.35

NOAH AAL Project

Documentation

2. Prices for the data bases

Data bases are used together with the other cloud services, thus the cheaper combinations

are:

SQL data base

Location: West Europe

Type: Single

Price level: Basic

Performance level: B, 5 DTUs, 2 GB of storage for each data base

Price: 0,0057 euro/hour

4,20 euro/month for 744 hours of operation

Cloud services

Location: West Europe

Type: A0, 1 core 0.75 GB RAM 20 GB HDD 0.017 euro/hour

Price: 12,55 euro/month

Total price: SQL+ Cloud services 16,75 euro/month

The next combination from the price point of view:

Location: West Europe

Type: A1, 1 core 1.75 GB RAM 40 GB HDD 0.067 euro/hour

Price: 50,19 euro/month

Total price: SQL+ Cloud services 54,40 euro/month

3. Prices for Azure IoT Hub

Gratuity for: 500 devices 8000 messages/day 0 euro/month

4. Prices for Stream Analytics

Processed data: 1 GB 0,01 euro/month

P.36

NOAH AAL Project

Documentation

Streaming units: 1 x 744 hours / month x 0,026 unitsi / hour = 19,45 euro / month

5. Prices for bandwidth

The first 5 GB / month of data transfer are for free.

For 6 GB / month de data transfer 0,07 euro / month

For 7 GB / month de data transfer 0,15 euro / month

For 8 GB / month de data transfer 0,22 euro / month

6. Prices for IP addresses

Instance-level IP Addresses: 0 euro / month

Load Balanced IP Addresses: 0 euro / month

Reserved IP Addresses: 0 euro / month

IP Address Remaps: 0 euro / month

7. Prices for Gateway

Free if no instancing needed

Gateway: 1 instance x 744 hours / month = 17,57 euro / month

1 GB of processed data: 0,01 euro / month

- first 5 GB are for free

8. Prices for VPN

Inbound data transfer Inter-VNET is for free.

VPN Gateway: 0,03 euro for 1 hour / month

Outbound data transfer Inter-VNET: first 5 GB are for free, then each extra GB cost 0,07

euro / month

Total price VPN for 1 hour gateway and 6 GB data: 0,10 euro / month

9. Prices for DNS

P.37

NOAH AAL Project

Documentation

Hosted DNS zones: 0 euro / month

For each hosted DNS: 0,42 euro / month

DNS Queries (millions): 0 euro / month

For each DNS Querry: 0,34 euro / month

10. Prices for storage

Location: West Europe

Storage type: Blob

Price level: Standard – Blob Storage Account

Redundancy: LRS

Access level: COOL

Capacity: 1 GB

Price: 0,01 euro / month

For each 10000 de operations: 0,084 euro / month

Data extraction: for each GB 0,01 euro / month

Data introduction: 0,01 euro / month

Total price: 0,02 euro / month

The price is identical for General Purpose Storage Account

The price este identicale for the HOT access level

Location: West Europe

Storage type: Page Blob and Disk

Price level: Basic

Redundancy: LRS

Capacity: each GB costa 0,04 euro / month

Each 100000 transactions cost 0,01 euro / month

P.38

NOAH AAL Project

Documentation

Total price: 0,05 euro / month

11. Prices for Backup

Redundancy: LRS

An instance of 1 GB costs 4,24 euro / month

For each GB there are added 0,02 euro / month

12. Prices for Web cu Mobile – Serviciul App Service

Creation of Web & Mobile applications for any platform and any device.

Location: West Europe

Level: Basic

Instance dimensions: B1, 1 core 1.75 GB RAM 10 GB HDD 0.063 euro / hour

Price: 1 instance x 744 hours = 47,06 euro / month

SSL conexions: gratuity for 1 connexion / month

Each extra connexion costs:

2 connexions: 7,59 euro / month

3 connexions: 15,18 euro / month

Total price for 3 connexions: 109,29 euro / month

13. Prices for Web & Mobile – API Management

Publishing API-s for programamers, partners and employees – in a secure and scalable way

Location: West Europe

Price level: Developer

1 unit x 1 day = 1,33 euro / month

Location: West Europe

Price level: Standard

1 unit x 1 day = 19,02 euro / month

P.39

NOAH AAL Project

Documentation

Location: West Europe

Price level: Premium

1 unit x 1 day = 77,50 euro / month

14. Prices for programming instruments – Visual Studio Team Services

Services for teams sharing code, progress monitoring and deployment

Version control, continuous integration etc

Gratuity for first 5 users

For 6 users: 5,06 euro / month

Gratuity for stakeholders

Gratuity for the subscribers of MSDN platforms

14.a. Extensions for the users

For each Test Manager: 43,85 euro / month

For each Package Management: gratuity for u[to 5 users.

Each extra user costs 3,37 euro / month

14.b. Prices for pipelining

For build and release pipelines:

Hosted pipelines: 33,73 euro / month each

Private pipelines: 1 fore free. Any extra one costs 12,65 euro / month

Gratuity for Cloud-based load testing

15. Prices for programming instruments – HockeyApp

Deploys mobile applications, collects the feedback and reports error messages, monitors the

usage.

Gratuity for 2 applications with one owner.

P.40

NOAH AAL Project

Documentation

For 15 applications with 3 owners: 25,30 euro / month

For 45 applications with 9 owners: 50,60 euro / month

16. Prices for monitoring and management – Application Insights

Detects, sorts and diagnoses problems of the web applications and services.

Gratuity for 1 GB / month.

1,94 euro / month for each extrra GB.

17. Multi-step Web Test

Each test costs 8,43 euro / month

Microsoft Azure IoT cost

Free for 8000 de messages / per device / pe day.

For more messages see the next screenshot.

P.41

NOAH AAL Project

Documentation

 IBM Bluemix IoT cost

Using Blumix IoT platform is free for the conditions presented in the next screenshot:

 For exchanged data, cost is like in the next screenshot:

P.42

NOAH AAL Project

Documentation

Conclusion of Part 2

Both Microsoft Azure and IBM Bluemix offer a free space for IoT but the registration to the

Azure cloud requires providing a credit card number and a sum of $ 170 as a deposit, which

is why we have not accessed the Azure platform for evaluation purpose – thus, the

information presented hereby is taken only from Microsoft documentation.

IBM Bluemix can be used free of charge for a period of 12 months, as we benefit from this

type of account via the Academic Innitiative. Eventually, this facility can be extended for

another year on request.

IBM Bluemix provides each user with a unique communication channel (as if each user

should have his/her own private cloud).

For this reason, it is possible to organize our NOAH team with different access rights for

each partner. We can use an academic account where user groups are created by roles

(developers, testers, administrators, etc.) that would allow all partners to work in the same

space, each one have its own ”view” / access profile, depending on interest / role.

P.43

NOAH AAL Project

Documentation

On page 44 of the document IBM Watson IOT Brasov.pdf (we attach this document to the

deliverable) you can see that the application could be used for free by the users as long as

the limit values (reasonable for our Pilots) are not exceeded. In the case of exceeding those

values, the costs are those on page 45. It can be seen that the additional payment is made

only for the number of messages users send.

After completing the application itself (which can be done either in Java or C #, as Bluemix

IBM provides both a Java service and a ASP.NET service), data can be processed using the

Watson IoT platform that provides also a series of AI (Artificial Intelligence) algorithms

(predictive, perspective, cognitive etc) that allow analytical processing (thorough Data

Analytics). This can be very useful for the development of the BAM (Behavioral Analysis

Model) module which would be harder to develop in MS Azure.

For example, IBM Predictive service engage Machine Learning models to detect abnormal

behavior (of things or humans) - anomaly detection is the most sought after algorithm that

can forecast trends and detects data that violates patterns. All of these and others are

available in the IBM Bluemix platform that includes capabilities for Realtime, Predictive and

Cognitive analytics.

We should avoid developing applications in a programming environment and implement

them in another environment, for the following reasons:

- Costs of connecting sensors and acquired data processing on Bluemix and the

development of graphical user interface are zero for a period of 12 months (that could be

extended), regardless of the platform loading (this loading can be assessed on different

approaches)

- Development on a cloud and deployment on another cloud has the disadvantage of losing

the services provided by the first one and the disadvantage of requiring virtual machines that

would increase the operating costs

- IBM Bluemix offers services that make programming very easy, without the need ”to start

from scratch” in order to connect to the cloud and to develop stand-alone applications to

process data acquired by the sensors.

P.44

NOAH AAL Project

Documentation

Part 3 – NOAH System architecture and

technologies

The architecture of the NOAH system is based on the client-server concept. An overview of

system is presented in the figure 7.

Figure 7 - Overview of NOAH system

In a first development iteration, the server side is developed and hosted by the IMB Cloud

(Bluemix) platform. This requires two continuously running services: Internet of Things

Platform (IoT) and Compose for MySQL.

The IoT platform communicates with the sensors and its role is to collect the data from the

sensors and forward them to the server application. The Compose for MySQL service offers

support for storing the necessary data for running the system.

The BAM module (Behavioural Analysis Module) processes data provided by the sensors to

identify behavioural patterns and estimates the well-being of the monitored users; the server

application reads the BAM module output and converts them into notifications or alerts that

are useful for the caregiver users.

Inter-component communication, respectively between client and server, is done by using

REST APIs, through HTTP protocol.

P.45

NOAH AAL Project

Documentation

After the optimization process, the NOAH system has been split into several microservices,
thus raising the modularity and scalability of the application.

This also bestows to NOAH systems the advantages of microservices-oriented architecture:
 the delivery of newer versions and new services is much faster because the

developing, testing and delivery time are shorter.

 availability – in general, the delivery of a newer version for a monolith application

requires restarting the entire system. The microservices architecture requires a lot

less downtime; with more instances of services running at once, the redundancy of

services is assured, so the delivery of new services is seamless.

 efficient management - since microservices behave as small portions of a whole, the

software developers that are part of the team will have the opportunity to work

independently and with a higher degree of productivity.

 flexibility – higher degree of flexibility in using frameworks, data sources and

libraries allows adjusting the application while it is being developed.

 reliability - in case of failure, only one module is affected. Conversely, failures in a

monolithic system can cause the entire system to stop.

 scalability – microservices allow for independent scaling of every component.

The second variant of the NOAH system uses a microservices-based architecture, which

contains 3 such components.

The microservices architecture consists of developing an application as a suite of small

services, each having its role, but communicating through messages, using simple

mechanisms, such as the HTTP protocol.

In the NOAH system the MQTT protocol is used to receive data from sensors and HTTP for

the interaction between the services that make up the server component.

The Node-RED version of the application developed using the IMB Cloud services

represents a prototype system. The microservices version represent the modularization of

the application and at the same time its optimization, allowing it to run in a diversity of cloud

environments.

The architecture implemented in this regard (figure 8) involves a server application built by

interconnecting three microservices that fulfil different functionalities. Thus, there is a service

that facilitates communication with the connected sensors including an MQTT broker and

which, through a connector, sends the information to a microservice that collects this

information and stores it. The third microservice represents the interface between the server

P.46

NOAH AAL Project

Documentation

and the client, exposing the paths for HTTP requests that serve information to Android

applications.

Figure 8 – Versions of the server architecture

Being a modular application, the server component of the NOAH system presents the

advantage of diversity, so microservices are developed using different technologies,

reaching the same result. In this way the communication part with the connected devices is

developed in the Python language, and the collection, processing of the data and their

service to the clients have been developed using the Spring Boot framework.

In order to store the data received from the sensors and other details needed to run the

application, the management system of relational databases MySQL was chosen.

NOAH System have two main components, a server application and a mobile application.

The server application has been developed in two ways. One was developed in Node-Red,

an environment provided by the IBM Cloud as a prototype version, and the other one in Java

based on the microservices architecture.

P.47

NOAH AAL Project

Documentation

Both approaches came to the same results, microservices base implementation brings

forward some advantages: increased scalability, modular built, development and release

process can be realized for a specific module without interfering with the others.

Server application – cloud tools version

The server application for the NOAH system is a REST API and is built using the IBM Cloud

(Bluemix) platform starting from the IoT module. The chosen development environment is

Node-RED which runs on a Node.js server and provides developers with a visual

programming environment.

The server application serving NOAH is scalable. For starters, it runs in a single instance

that uses 512mb of RAM. The application can be scaled according to needs or financial

plan.

Server application – microservices version

The microservice for the server application of the NOAH system is the central component

that serves to collect the data from the sensors. This application receives, via an HTTP

request, in JSON format, the data sent by the module that performs the communication with

the sensors. These are processed and stored into the MySQL database.

The Gateway application has the role to provide all the information that is needed in the

Android application, taking over the second part of the initial Node-Red. It takes the data

from the database and process it providing endpoints that are used by the mobile user

interface.

The AdminCenter web application (figure 9) is part of the system; an administrator user has

the possibility to register sensors, as IoT connected devices, and group them into kits. Also,

there is an overview of kits and the last received states of the sensors.

System security aspects

The security of the system is ensured by multiple methods depending on the characteristics

of each working flow.

P.48

NOAH AAL Project

Documentation

Figure 9 - AdminCenter Overview of NOAH kits

Users’ access to the application is controlled based on the username-password pair

authentication mechanism, improved with the rights assigned to a specific user, defining

roles which restrict the features of the application that can be used.

Authentication on the AdminCenter can be performed only by the users that have

administrator role, each country has its own user/s that can manage the NOAH kits.

Mobile applications can be accessed by two types of users: caregivers and end-users, roles

that provide access to specific features. These applications provide an auto-login feature

secured by a token which is generated when user logs in and is deleted when user logs out.

The application requires a link between the two types of end users. For a caregiver user to

associate with an end-user, he/she must enter the secret 4-digit PIN as an initial pairing

procedure, a PIN that is owned/known only by the end-user.

The sensors used by the system are from the IoT sphere, directly connected to the Internet,

without the need for an intermediate computing system. Communication with the server is

secured by using the SSL / TLS protocol (PKI – Public Key Infrastructure).

P.49

NOAH AAL Project

Documentation

Measures were taken for guarding users’ identities. Data is kept in anonymized database

tables, not directly linked to the users. All communication interfaces with the database are

secured using the internal mechanism of the database management systems.

Conclusion of Part 3

The NOAH system uses cloud technologies and IoT principles to provide quality services, in

a flexible and scalable product.

The two equivalent deployments as facilities (the first, using services provided by IBM Cloud,

the second representing a more flexible solution from the point of view of the cloud service

provider), give a clear advantage to the system, being widely scalable, depending on by the

number of users and budget.

The technologies chosen to develop the system’s modules are Java-based, the

microservices being developed using the SpringBoot framework, compatible with most of the

containerization environments offered by cloud providers.

