
1

Acronym: vINCI

Name: Clinically-validated INtegrated Support for Assistive Care and Lifestyle
Improvement: the Human Link

Call: AAL 2017 “AAL Packages / Integrated Solutions”

Contract nr: AAL-2017-63-vINCI

Start date: 01 June 2018

Duration: 36 months

D2.4. Report on technical specifications of the vINCI

platform

Nature1: R

Dissemination level 2: CO

Due date: Month: Month 27

Date of delivery: Month 27

Partners involved (leader in bold): ICI, UNRF, NIT, CTR

Project Co-Funded by:

Project Partners:

[1] L = legal agreement, O = other, P = plan, PR = prototype, R = report, U = user scenario
[2] PU = Public, PP = Restricted to other programme participants (including the Commission Services), RE = Restricted to a group specified by

the consortium (including the Commission Services), CO = Confidential, only for members of the consortium (including the Commission

Services)

2

Partner list:

No. Partner name Short name Org. type Country

1 National Institute for Research and
Development in Informatics

ICI R&D Romania

2 Marche Polytechnic University MPU R&D Italy

3 University of Nicosia Research Foundation
UNRF R&D Cyprus

4 National Institute of Telecommunications NIT R&D Poland

5 Connected Medical Devices CMD SME Romania

6 Automa Srl AUT SME Italy

7 Optima Molliter (f. Salvatelli) Srl SAL SME Italy

8 National Institute of Gerontology and

Geriatrics “Ana Aslan” NIGG R&D Romania

9 Comtrade Digital Services CTR Large enterprise Slovenia

 Revision History

Rev. Date Partner Description Name

1 31.12.2019 NIT Created the template, added the sections and
content to the section 2

Waldemar Latoszek, Piotr
Krawiec

2 27.04.2019 NIT ToC update W.Latoszek, P.Krawiec

3 09.06.2020 ICI Contribution from ICI ICI

4 20.08.2020 NIT Contribution from NIT NIT

5 28.08.2020 NIT Editorial checking W. Latoszek, P. Krawiec

 Disclaimer:

The information in this document is subject to change without notice. Company or product names mentioned in this document may be

trademarks or registered trademarks of their respective companies.

All rights reserved

The document is proprietary of the vINCI consortium members. No copying or distributing, in any form or by any means, is allowed without

the prior written agreement of the owner of the property rights.

This document reflects only the authors’ view. The European Community is not liable for any use that may be made of the information

contained herein.

3

Table of Contents
1. Introduction .. 5

2. The vINCI platform architecture ... 6

2.1 Main modules ... 6

2.2 Data storage ... 10

2.3 vINCI API ... 12

3. Security .. 16

3.1 vINCI Infrastructure Security .. 17

3.2 vINCI Server Platform Security .. 17

3.3 Access control ... 18

3.3.1 Release#1: data security ensures by using classic mechanisms ... 19

3.3.2 Release#2: blockchain-based approach for access rights management .. 19

3.3.3 Data privacy protection .. 20

4. Blockchain-based data access management concept .. 22

4.1 Implementation of the blockchain platform .. 23

4.1.1 Blockchain network description ... 23

4.1.2 Blockchain platform implementation .. 24

4.1.3 Fabric proxy ... 27

4.2 Blockchain platform validation tests ... 27

5. Open platform approach .. 28

5.1 Technical aspects for accessing patient data from the vINCI platform by 3rd Party entities 29

5.2 Technical aspects of integration with 3rd Party data providers .. 31

Bibliography .. 32

6. Annex I – HyperLedger terms definition ... 33

7. Annex II – Classes and methods of fabric-proxy sub-module. .. 35

8. Annex III - Blockchain platform validation tests results ... 37

4

9. Annex IV - Installation/configuration guides of the vINCI platform .. 43

9.1 Installation of the vINCI platform on NIT infrastructure ... 43

9.2 Network infrastructure.. 43

9.3 HTTP proxy – NGINX server ... 44

9.4 vINCI server platform ... 45

9.5 Access to the vINCI platform ... 49

5

1. Introduction
This report presents the deployment details of the vINCI platform. The platform aims to gather patient’s

data using different vINCI Kits, and next use the data to monitor patient’s health.

The vINCI platform has been implemented in multi-module architecture. The implementation was done

based on Java JHipster - a development platform to generate, develop and deploy web applications with

microservice architectures. Microservices are JHipster applications that handle REST (Representational

state transfer) requests. They are stateless, and several instances of them can be launched in parallel

to handle heavy loads.

The detailed description of the vINCI platform architecture, jointly with all implementation aspects, is

presented in other Project deliverables: D2.5 Report on technologies integration and lab technical

validation of kits (section 2 The vINCI Architecture and section 4 Platform Services, Data Orchestration

and Integration of [D2.5]) and D3.3 Open data and model repository (section 4 vINCI Open Data and

Model Repository). Consequently, this report in the next section presents only a brief description of the

vINCI platform architecture and modules, and next focuses on the platform’s data security mechanisms,

and blockchain-based data access management developed within the scope of the project. The last

section provides information on integration 3rd Party solutions with the vINCI platform.

Provided appendixes present implementation details of blockchain platform jointly with related validation

tests results, and an installation guide for vINCI platform software.

6

2. The vINCI platform architecture
The vINCI platform allows gathering data from external sensing devices (watch, shoe/insole, camera)

using REST calls. Each device type is mapped to dedicated platform’s microservice. The main

microservice – Gateway, handles Web traffic, and it acts as the entrance to all microservices and

provides HTTP routing and load balancing, quality of service, security functions and API router for the

all microservices. Moreover, the Gateway stores information about the patients (platform users) and their

devices, together with user alerts and device alerts. On the other hand, the IOServer microservice stores

the actual data that comes from sensing devices (in separate tables for each device type).

The brief description of functionalities of each module is presented in subsections below. Detailed

specifications of the modules, their functionalities and implementation details are provided in deliverables

[D2.5] and [D3.3].

Figure 1 vINCI platform deployment architecture.

2.1 Main modules

The platform components/modules are run as Java applications in production mode or docker machines.

The Figure 1 shows the architecture of the platform: all components and communication between them.

All components have been implemented based on the Java Spring framework using a JHipster

7

generator. The Data Storage module is responsible for collecting data and is implemented as

a distributed PostgreSQL database. Individual modules write and read data to the database using

PostgreSQL clients.

JHipster Registry

The JHipster Registry is a runtime open source Apache application. Its source code is available on

GitHub under the JHipster organization at jhipster/jhipster-registry.

The JHipster Registry has the following functionality:

• It is an Eureka server, that serves as a discovery server for Gateway and other microservices.

This is how JHipster handles routing, load balancing and scalability for all applications.

• It is a Spring Cloud Config server, that provide runtime configuration to all microservices.

• It is an administration server, with dashboards to monitor and manage gateway/microservices.

Gateway

The gateway contains both the front-end part implemented using React library and the Java Spring

microservice that manages the access to the vINCI platform backend.

It manages the following entities:

• User – main information about the user (login, password, name etc.),

• UserAlert – information about user alerts,

• UserExtra, - addition information about the user (address, gender etc.),

• UserImage – user profile picture;

• Device – information about user devices;

• DeviceAlert – information about device alerts.

Gateway front-end has the following main functionalities:

• user registration;

• authentication using JSON Web Tokens;

• sensor data storage by communicating with the storage stack;

• user, application data and sensor data retrieval;

• user interface, consisting of:

o editing account data;

o adding standalone sensors (by defining names, UUID, type, description, etc.);

o adding virtual sensors (for the mobile application);

o selecting applications (defining associated sensors and parameters);

o visualizing per-application data;

o visualizing data from any application defined in a customizable client dashboard;

• admin interface

In the backend, the Gateway is connected to all microservices and redirects all requests from client

application to the microservices, using their application name: for example, when microservices watch

is registered, it is available on the gateway on the /watch URL. The gateway also provides additional

functionalities like: rate limiting, access control and tests of microservices API.

8

Dashboard

The dashboard is a ReactJS client-side application which is deployed together with the gateway.

The basic functionalities of the dashboard include:

• creating and managing user accounts;

• entity management;

• server administration and server operation monitoring.

In the case of managing user accounts, it is possible to register various types of users: administrators,

patients, organizations, families.

The dashboard panel enables operations that allow managing entities implemented in gateway and

IOServer modules. The following operations can be performed for each of the entities:

• creating new records;

• modify existing records;

• editing existing records;

• delete records.

The above-defined actions translate into calls to the appropriate REST API methods, which next perform

operations on the database.

Administration and monitoring enable a set of functionalities such as:

• checking the currently running microservices;

• checking resources used by applications and statistics related to generated traffic;

• checking real-time user activities;

• configuring the appropriate login level in individual microservices.

Microservice IO-server

The microservice IOServer is a module that integrates user data with sensor data and questionnaires

filled in by users. This microservice communicates on the one hand with Watch, Shoe, Cameras and

Survey microservices in order to download current data, on the other hand with the gateway microservice

in order to associate this data with users/patients by checking the identifiers of their devices. Intra-module

communication has been implemented on the basis of Feign Client classes. In the case of data from

Watch, Shoe and Cameras microservices, the data is stored in the same types of entities composed of

the following parameters:

• Id – data identifier

• data - contains data in the form of JSON string,

• timestamp - time of data receipt,

• deviceID - client device ID.

Microservice Survey

The microservice Survey is responsible for managing the data obtained from the patient questionnaires.

The microservice has implemented SurveyData and UserExtra entities along with REST API controllers.

There are Many-to-One relationships between entities, which means that a single user/patient can

complete several, different types of questionnaires.

9

The data stored in the survey microservice do not contain the entire questionnaires in the form of JSON

strings, but only important information from the questionnaire completed by the user (see Figure 4).

Microservice devices

This microservice collects in the entity Device generic information about user device/devices and device

user ID.

Microservice Shoe

The basic functionality of the Shoe microservice is processing and collecting data generated by vINCI

Shoe/Insole Kits. The microservice has implemented database client connected constantly to the

platform database and implements REST methods: POST,GET, PUT and DELETE. Calling the

appropriate REST method causes the appropriate action in the database (read, write, update, delete).

In the processes of calling POST and PUT methods the validation of the data in JSON format is

performed.

Microservice Watch

The microservice is responsible for collecting data from vINCI Watch Kits.The microservice has

implemented a function in the REST API controller to import data from the CMD platform by the POST

method call (https://vinci.il-pib.pl/watch/api/import). This method calls the functions of the

retrieveAndPersist () of the ImportResource class through which it communicates with the CMD platform.

As a result the received data are collected in the local storage of the watch microservice. The

microservice has also implemented REST Client (based on Spring Feign Client class) to get the data

from the Gateway Device entity and send the data to the IOServer microservice.

Microservice Camera Movement and Camera Fitness

For camera movement and fitness, two separate microservices (without their own databases) are

deployed on the platform. The main function of these microservices is to receive data captured by camera

devices and send them to the IOServer microservice.

Analysis Module

The analysis module is implemented in the Aggregator microservice. This module is intended for

performing analyses based on data determining the patient's static profile and dynamic profile (see

section 4.3.3. Patient profile of [D3.3]).

Aggregator module communicates with the following modules: Gateway, IOServer and Survey through

the use of classes implemented on the basis of Feign Client libraries, which are responsible for intra-

module communication.

The microservice periodically takes all the data from the database (from the last processing onwards),

and extracts a Machine Learning model to detect anomalies in patient health/behaviour. This gives the

probability, given the data collected by kits, that the patient suffers a clinically-significant deterioration in

10

his condition(s) associated with old age (and how these conditions reflect over her/his subjective

perception of QoL).

At this moment, the module implements mechanisms for extraction of collected data from the database.

It’s analytical logic will be implemented in parallel with the results obtained in work package WP3 Data

Analytics & Governance, which aims to develop anomaly detection algorithm based on, among others,

vINCI pilot studies.

2.2 Data storage

Data storage of the vINCI platform is implemented based on PostgreSQL database. The detailed

description of the platform data storage is presented in section 4.3 Data repository structure of [D3.3].

Current implementation of the vINCI platform contains three logical data repository:

• Gateway database, with the structure presented in Figure 2;

• IOServer database, with the structure presented in Figure 3;

• Survey database, with the structure presented in Figure 4.

Figure 2 The structure of the Gateway database.

11

Please note that in the final solution the Survey database will be removed, and all its data will be migrated

to IOService database (survey_data entity). As a result, IOService database will be the central point that

provides data collected from different vINCI data sources to further analysis.

Figure 5 illustrates the relation between IOServer database and Gateway database. The anchor point is

generic device entity that represents each device that belongs to the user.

Although PostgreSQL is an efficient and recognized database engine, high frequency of data

transmissions performed by vINCI Kits may results in its performance degradation. We consider this

aspect as a potential platform’s bottleneck and we will monitor access delays to the database during

pilots. If monitoring indicates database deterioration, we will migrate sensor data storing service to the

high performance NoSQL database.

Figure 3 The structure of the IOServer database.

Figure 4 The structure of the Survey database.

12

Figure 5 The important connections between the tables from the IOServer and Gateway databases.

2.3 vINCI API

The table below contains summary of all REST interfaces currently implemented in the vINCI platform.

Microservice Gateway

Entity
User

 POST /users : Creates a new user

 PUT /users : Updates an existing User.

 GET /users : get all users.

 GET /users/authorities return a string list of the all of the roles

 GET /users/:login get the "login" user

 DELETE /users/:login delete the "login" User

 GET /users/aggregated get all the associated users' info plus their status

 GET /users/id-for-bracelet get the user id associated with the bracelet color
and device id

 GET /users/images get all user images

 POST /users/camera-data Send camera data on the websocket

 POST /users/face-recognition : Send camera recognition on the websocket

UserExtra

13

 POST /user-extras : Create a new userExtra

 PUT /user-extras : Updates an existing userExtra.

 GET /user-extras : get all the userExtras

 GET /user-extras/:id : get the "id" userExtra

 DELETE /user-extras/:id : delete the "id" userExtra

UserAlert

 POST /user-alerts : Create a new userAlert.

 PUT /user-alerts : Updates an existing userAlert

 GET /user-alerts : get all the userAlerts

 GET /user-alerts/:id : get the "id" userAlert

 DELETE /user-alerts/:id : delete the "id" userAlert

Device

 POST /devices : Create a new device

 PUT /devices : Updates an existing device.

 GET /devices : get all the devices

 GET /devices/type : get all watch the devices.

 GET /my-devices : get a list of devices corresponding to the logged user

 GET /devices/:id : get the "id" device.

 GET /devices/uuid/:uuid : get the "uuid" device (used by ioserver feign client).

 GET /devices/:id : get the "id" device (used by ioserver feign client)

 DELETE /devices/:id : delete the "id" device.

 GET /devices : get all the devices.

DeviceAlert

 POST /device-alerts : Create a new deviceAlert

 PUT /device-alerts : Updates an existing deviceAlert

 GET /device-alerts : get all the deviceAlerts

 GET /device-alerts/:id : get the "id" deviceAlert

 DELETE /device-alerts/:id : delete the "id" deviceAlert

Microservice IOServer

SurveyData

 POST /survey-data : Create a new surveyData

 PUT /survey-data : Updates an existing surveyData

 GET /survey-data : get all the surveyData

 GET /survey-data/count : count all the surveyData

 GET /survey-data/:id : get the "id" surveyData

 DELETE /survey-data/:id : delete the "id" surveyData.

WatchData

 POST /watch-data : Create a new watchData

 PUT /watch-data : Updates an existing watchData

 GET /watch-data : get all the watchData.

 GET /watch-data/count : count all the watchData

 GET /watch-data/:id : get the "id" watchData

 DELETE /watch-data/:id : delete the "id" watchData

 DELETE /watch-data :delete all watchData entities

ShoeData

 POST /shoe-data : Create a new shoeData

14

Microservice Survey

SurveyData

 POST /survey-data : Create a new surveyData

 PUT /survey-data : Updates an existing surveyData

 GET /survey-data : get all the surveyData

 GET /survey-data/:id : get the "id" surveyData

 DELETE /survey-data/:id} : delete the "id" surveyData

 GET /survey-data : get all the surveyData for userExtraId

 GET /survey-data : get all the surveyData for surveyId

 GET /survey-data : get all the surveyData for medicalId

UserExtra

 POST /user-extras : Create a new userExtra

 PUT /user-extras : Updates an existing userExtra.

 GET /user-extras : get all the userExtras

 GET /user-extras/:id : get the "id" userExtra

 DELETE /user-extras/:id : delete the "id" userExtra

 GET /user-extras/user/{userIdentifier} GET userExtra for user

 GET /user-extras/user/family/{familyIdentifier} GET get all the
userExtras by family

 GET /user-extras/user/organization/{organizationIdentifier} GET get all
the userExtras by organization

Microservice Watch

Watch

 POST /import : Records import API

 PUT /shoe-data : Updates an existing shoeData

 GET /shoe-data : Get the list of data for a shoe device id

 GET /shoe-data/count : count all the shoeData

 GET /shoe-data/:id : get the "id" shoeData

 DELETE /shoe-data/:id : delete the "id" shoeData

CameraFitness

 POST /camera-fitness-data : Create a new cameraFitnessData

 PUT /camera-fitness-data : Updates an existing cameraFitnessData

 GET /camera-fitness-data : get all the cameraFitnessData

 GET /camera-fitness-data/count : count all the cameraFitnessData

 GET /camera-fitness-data/:id : get the "id" cameraFitnessData

 DELETE /camera-fitness-data/:id : delete the "id" cameraFitnessData

CameraMovement

 POST /camera-movement-data : Create a new cameraMovementData

 PUT /camera-movement-data : Updates an existing
cameraMovementData

 GET /camera-movement-data : get all the cameraMovementData

 GET /camera-movement-data/count : count all the
cameraMovementData

 GET /camera-movement-data/:id : get the "id" cameraMovementData

 DELETE /camera-movement-data/:id : delete the "id"
cameraMovementData

15

Microservice Shoe

Shoe POST /records : Create a new record

 POST /import : Import a list of records

 PUT /records : Updates an existing record

 GET /records : get all the records

 GET /records/count : count all the records

 GET /records/:id : get the "id" record

 DELETE /records/:id : delete the "id" record

16

3. Security
vINCI platform handles sensitive patient’s data, therefore a very important aspect is to ensure the

security of data transfer, data storage, data access as well as data privacy. Set of requirements related

to this issue have been presented in [D3.1] (requirements Req#1 – Req#18 described in section 4.2 of

[D3.1]). The implementation of the platform was aimed at meeting all the specified requirements.

The figure below shows the overall security architecture of the vINCI platform deployed in the NIT, using

the PL-LAB1 experimental facility. It provides three levels of security provisioning:

• level 1 – NIT firewall secure functions;

• level 2 - HTTP Proxy: the NGINX server with security mechanisms;

• level 3 - vINCI server platform security mechanisms.

Figure 6 vINCI platform overall security architecture.

1 PL-LAB2020 is the Polish network testbed developed under the project financed by the European Union
through the European Regional Development Fund under the Operational Programme ‘Innovative Economy’ for
the years 2007-2013. Project number: POIG.02.03.01-00-104/13-00

NIT firewall

DNS
server

vINCI server platform

IT center
Switch

Virtualization
Switch

HTTP Proxy - NGINX
DMZ

Internet

Secure
Zone

level1

level2

level3

Project Partners Networks
(sensors, applications)

17

3.1 vINCI Infrastructure Security

The PL-LAB infrastructure is located in a dedicated server room with restricted access, ensuring physical

security.

NIT Firewall

The firewall provides protection against threats coming from the Internet and network protection

against intrusion. The firewall configuration includes:

• configuration the external public IP address for the vINCI platform;

• transition (NAT) the local address of vINCI platform to the public IP address;

• limiting the ports exposed externally - only ports for ssh (22) and https (443) services should

be opened (note: for testing purposes during system development, also http ports are opened);

• restricting access to the vINCI platform only for the network of Project partners.

DMZ (Demilitarized Zone)

The DMZ includes the following:

• Switch network configured into one common VLAN with KVM switch installed on the

vINCI server platform;

• DNS server - The DNS server is maintained by the NIT IT center. Domain names of the

vINCI platform entered into the DNS are:

o www.vinci.il-pib.pl

o vinci.il-pib.pl

• HTTP proxy – NGINX server. The NGINX server is a proxy for the system and it is

responsible for the following security mechanisms:

o SSL termination and proxy to the vINCI platform gateway module;

o maintaining certificates for HTTPS operation for domain names;

o maintaining certificates for user authentication based on the private key;

o limiting access to Proxied HTTPS Resources;

o restricting access to Proxied HTTPS Resources;

o dynamic blacklisting of IP Addresses;

Using DMZ approach ensures physical and logical protection of remote diagnostic and devices’

configuration ports.

3.2 vINCI Server Platform Security

The security mechanisms used in the implementation of the vINCI system are described below.

JWT (JSON Web Token) authentication

JWT (JSON Web Token) is an industry standard, easy-to-use method for securing applications in

a microservices architecture [jwt].

The authentication process is as follows:

1) the client sends a request with user and password;

2) the gateway redirect them to the dedicated microservice, which is a specialized authorization

component;

http://www.vinci.il-pib.pl/

18

3) the gateway receives a token with the user’s ID and role and send it to the client;

4) for each subsequent request, the client includes the token, which the API gateway checks

using the AUTH microservice.

To ensure security, a JWT secret token must be shared between all microservices. The tokens are self-

sufficient: they have both authentication and authorization information, so microservices do not need to

query a database or an external system. This is important in order to ensure a scalable architecture.

The JWT authentication implies that access to individual applications must require a user ID and

authentication.

User roles

The Gateway front-end (login view) allows the access for different types of users:

• "SystemUser", who is mainly used by our audit logs, when something is done automatically;

• "AnonymousUser", who is given to anonymous users when they do an action;

• "User", who is a normal user with "ROLE_USER" authorization; the default password is "user";

• "Admin", who is an admin user with "ROLE_USER" and "ROLE_ADMIN" authorizations; the

default password is "admin".

HTTP configuration security

Basic options for HTTP controlling access to the microservices resources are defined in the

SecurityConfiguration.java file (for each microservice). The following rights are defined in the file:

• related to HTTP user authentication;

• resource access rights for users;

• management access for users.

Security of inter-service-communication using Feign clients

The communication between modules is based on Feing clients. This communication also has an

appropriate level of security. To accomplish this, some request interceptor for Feign has been

implemented, which implements the client credentials flow from OAuth to authorize the current service

for requesting the other service. In JHipster, it is used @AuthorizedFeignClients instead. This is an

annotation provided by JHipster, which performs this functionality.

Testing of the vulnerability to attacks requirement, as recommended in the Open Web Application

Security Project - OWASP Top 10, is fulfilled through application of the OWASP dependency-check-

gradle plugin in the compilation of vINCI platform microservices.

3.3 Access control

Ensuring the security and confidentiality of data in the vINCI system requires the implementation of

appropriate mechanisms to manage permissions and access control to data and/or functions.

In order to facilitate system implementation, we have introduced two phases in the development of

security mechanisms for the vINCI platform.

The first phase is that security of access to data is realized by using classical security mechanisms,

according to the current state of the art and guidelines of relevant bodies and organizations (NIST,

19

OWASP etc.). This enables the quick development of the platform (we name it as Release#1), which is

ready to accept the data and carry out the first tests of the vINCI system.

In parallel to the development and maintenance of the vINCI platform Release#1, we are working on

a new data access management solution based on blockchain technology. The vINCI platform integrated

with blochkchain-based access management is called Release#2.

3.3.1 Release#1: data security ensures by using classic mechanisms

We use the following mechanism to secure access to the vINCI data (Figure 7):

• Access to service is possible only for authorized users/devices. By default, the authentication

and authorization mechanism relies on client SSL authentication certificates. However, mainly

for testing purposes, the platform allows also for login/password authentication.

• Communication security is provided by using HTTPS protocol.

Figure 7 The data security mechanisms (Release#1) of the vINCI platform

3.3.2 Release#2: blockchain-based approach for access rights management

In Release#2 of the vINCI platform, management of permissions and access control to data is performed

using blockchain (Figure 8). Blockchain is a technology that supports sharing of values, in case of vINCI:

medical data. Blockchain is a digital ledger where there are stored all the executed transactions. It uses

a distributed, peer-to-peer network to make a continuous growing list of ordered records called blocks.

Every block contains a set of signed transactions and is validated by the network itself, by means of

a consensus mechanism. Copies of the blockchain are distributed on each participating node in the

20

network. Blockchain can be considered as a permanent database because the implemented algorithms

prevent alteration of the already stored information.

Blockchain provides unified, secure and user-controlled access to patient’s health data. It allows users

to easily grant, modify or revoke access to their data. Thanks to blockchain, patients’ data are:

• tamper-proof,

• shareable and retrievable for carers/healthcare providers who have been granted access to it,

• secure - entities that have granted permissions to data from data owners, can access health

records only when their identities and cryptographic keys have been verified by blockchain.

We use open source Hyperledger Fabric framework as an implementation platform. The prototype

application will implement the main components of a blockchain based software such as blockchain

display, blockchain query, adding new transaction, transactions validation, creating blocks and

appending them to blockchain, broadcast blockchain, and blockchain integrity check.

Figure 8 The data security mechanisms (Release#2) of the vINCI platform

More details of blockchain-based data access management are presented in Section 4 of this report.

3.3.3 Data privacy protection

In order to increase the security and privacy of personal data, our system uses pseudonymization

mechanisms to remove the characteristics of personal data. Data containing personal data are kept

based on data separation model, investigating two databases: identification database and medical

database.

In
te

rn
et

vINCI platform

Collecting modules

Data
storage

Smart insoles

CMD
platform

GPRS / WiFi

BLE / LoRA

Depth camera Analysis module

Gateway &
micro-

services

Smartphone /
LoRA Gateway

Blockchain-based authentication and access rights management

Smartwatch HTTP
proxy

Clinical
questionnaire filled

in by the patient

Medical
investigations

HTTPS communication
(TLS tunel)

21

The identification database contains only identification data, without medical data - although it is still

personal data, it does not contain any additional information apart from pure data identifying, and above

all, do not contain sensitive information about the patient's health.

The identification data set contains two entities from Gateway module: User and UserExtra (see Figure

2). All other entities from Gateway, IOServer and Survey microservices are considered as medical data

set, that do not contain identification information (see Figure 3). The linking of the relevant data records

from the identification data set with health related sensitive data is made by using UserExtra Id, which is

a random attribute disguising an individual’s identity (see Figure 5).

Moreover, fields of the UserExtra entity are encrypted (using PostgreSQL encrytpion options) to hide

relationship between User Id used for user identification and UserExtra Id used in medical data storage

(see Figure 5).

In case of the analysis module, we consider entities “Contact Information” and “Socio-cultural data” of

the patient's static profile (see section 4.3.3 of [D3.3]) as an identification data set, which is separated

from a medical data. In turn, medical data set includes all entities related with dynamic profile, as well as

medical information from static profile.

It should be noticed, however, that simultaneous, unauthorized access to both databases (identification

and medical) immediately causes the loss of data confidentiality - as a consequence of the existence of

an explicit relationship. Nevertheless, such a solution is a tradeoff between high security demands and

high performance requirements, which is also important for a system that handles large amount of data.

To enhance security, the two data sets are physically separated, so that each of them is stored in

a different database, on a different virtual server.

22

4. Blockchain-based data access

management concept
As mentioned in section 3.3.2, the vINCI platform (Release#2) provides blockchain-based access

management to patient’s data as an additional feature that increases data security and data access

flexibility.

Our concept, as presented in [D3.1], assumes that patients are recognized as owners of their own health

data and have full control over it. They can apply various security policies, such as sharing data with

specific clinics or institutions, and can contribute anonymously to certain statistics. These policies are

stored securely in blockchain network which ensures a high level of guarantees that such data access

policies will not be modified or injected into the system in an unauthorised manner.

Security policies will be created by patients in a simplified way by using patient’s app. This process

requires twofold trustiness:

• The system's trust in the user who defines a new policy for accessing (her/his) medical data;

• The user's trust in the entity to which he grants access rights to her/his medical data (doctor,

hospital etc.).

The first point can easily be met by traditional security mechanisms (access control), as the vINCI system

stores data about its patients (users) and thus verifies their identity.

It is more complicated in the second case. It can often turn out that an entity wishing to access a patient's

medical data, is not a user of the vINCI system (e.g. a doctor that a patient has applied to during a holiday

trip). In such a case, the verification of the identity of this type of entity falls exclusively on the patient, as

the vINCI system has no information about this entity.

A helpful solution in the latter case is Self-Sovereign Identity (SSI), i.e. the idea that a digital identity can

be created and used without dependencies on central or hierarchical authorities. In the concept of SSI,

Verifiable IDs and Verifiable Attestations (both types of "Verifiable Credentials") enable entities (i.e.

natural and legal persons: doctors, hospitals, insurance companies) to claim certain things about

themselves or others in a way that these claims can be regarded as proofs for certain attributes (i.e.

verify their identity against the vINCI system and vINCI users).

An example that supports those principles is ESSIF (European Self-Sovereign Identity Framework) ID

Service – a blockchain ID service developed in the framework of EBSI (European Blockchain Services

Infrastructure). This service is designated to provide unified identity verification of European level, based

on the background on different national Trusted Issuers that confirms Verifiable ID within its scope.

In this way, the entity to which patient wants to grant access will not have to be a vINCI registered entity,

but any legal entity which is credible to ESSI. This will significantly facilitate cooperation with institutions

such as clinics, doctors etc., to which the vINCI client will be able to share data whenever he/she wishes,

without the need for complex, direct interaction with the vINCI system (to register the entity in the vINCI

platform). In particular, this solution facilitates cross-border interaction with vINCI data and keeps

patient’s health data interoperable on European level.

23

As a result, patients are recognized as owners of their medical data and analysis results, have full

control over them and can apply access policies any time for whomever they want.

Figure 9. Concept of blockchain-based access data management with ESSIF identify verification.

Current Release#2 implementation includes blockchain network that stores data access policies. The

upcoming work will include the integration of the vINCI system with the module implementing the

interfaces specified so far under EBSI Technical Group.

4.1 Implementation of the blockchain platform

The implementation of the blockchain platform is based on an open source software - HyperLedger

Fabric version 1.4 [hyf].

The blockchain platform consists of the following three components:

• blockchain microservice

• fabric-proxy

• blockchain network

The blockchain microservice is the vINCI platform module that is integrated with the Gateway module.

The fabric-proxy is the module responsible for connecting the blockchain network with the vINCI platform.

The communication with the blockchain network is based on the fabric-gateway-java [fgj] libraries that

allows applications to interact with a fabric blockchain network.

The blockchain network is a set of components launched as docker machines that are implemented

based on fabric-samples software [hfs].

The following subsection presents the main components of the blockchain platform and implementation

issues.

4.1.1 Blockchain network description

For the project purposes, the blockchain network consists of two organizations2, each maintaining two

peer nodes. There was deployed a “kafka” ordering service by default. Each organization has its own

2 HyperLedger terms definitions are presented in Annex I.

24

Certificate Authority (ca_peerOrg1, ca_peerOrg2). Individual nodes are the docker virtualization system

machines and are configured based on docker-compose file. The Peer0 in Org1 and Org2 are

designated as the anchor Peer. All transactions saved in the blockchain of individual peers are finally

entered into the distributed CouchDB database – a document-oriented NoSQL database where

document fields are stored as key-value maps.

Moreover, a CLI container is launched to execute scripts that will join peers to a channel, deploy a

chaincode and drive execution of transactions against the deployed chaincode. The following nodes

have started in the blockchain network (Figure 10):

• ca_peerOrg1
• ca_peerOrg2
• order.example.com
• peer0.org1.example.com
• peer1.org1.example.com
• peer0.org2.example.com
• peer1.org2.example.com
• cli
• couchdb0,
• couchdb1
• couchdb2
• couchdb3

Figure 10 Installed components of the blockchain network

4.1.2 Blockchain platform implementation

The blockchain platform implementation includes three modules: microservice blockchain, fabric-proxy

and blockchain network. The Figure 11 shows the integrated architecture of the platform.

25

Figure 11 Integrated architecture of the blockchain platform

Blockchain microservice

The general idea of using blockchain platform has been presented in [D3.1], section 4.3. This chapter

describes the implementation based on the above concept and adapted to the implementation of the

vINCI platform. The main assumption of using blockchain technology is managing access to patients'

medical data. Thanks to this, it is possible to make diagnostic analyzes available only to specific

entities/organizations (doctors, medical institutions and other users). Data access rights are defined in

transaction blocks of the blockchain network, while health data (medical analyzes) are stored in the vINCI

database.

The interaction of the vINCI system with the blockchain network is based on the blockchain microservice

and its sub-module fabric-proxy (see Figure 11). The microservice defines two main entities whose data

is saved as transactions in the blockchain network: Storage and Policy.

The storage entity specifies information about a single medical analysis for a patient. A Policy entity is

defined for each Storage transaction and specifies data access policy by calling the appropriate REST

API methods defined in the microservice.

The scenario for creating a Storage and Policy transaction is as follows:

1. Storage transactions are recorded periodically and are performed automatically by the analysis

module running on the vINCI platform. The recording is done via REST API communication

between the analysis modules and microservice blockchain and the frequency of transaction

recording depends on the configuration of the analysis module.

2. The patient defines the list of entities authorized to access by calling the corresponding REST

API functions of the blockchain microservice, as a result of which the Policy transaction

associated with the Storage transaction is saved. At this step, verification of the entity that wants

to get access to patient’s data will be performed based on ESSIF service.

3. The concerned entity queries the appropriate Policy transaction entity to retrieve the keys for

accessing patient data.

4. Based on the received security access key, it is possible to call the REST API function to obtain

patient diagnostic results saved in the blockchain database.

26

The object definitions of the BlockchainStorage and BlockchainPolicy entities and REST API

functions defined in the blockchain microservice are presented below.

public class BlockchainStorageDTO {

private Long TransactionID;
private Long UserID;
private Long MedicalID ;
Instant Timestamp;
}

public class BlockchainPolicyDTO {

private Long TransactionID;
private Long organizationID;
private String Signature_of_the_granted_organization;
private String Users_ signature;
private String Access_key;
Instant Timestamp;
}

REST API Controller methods:

BlockchainStorage entity:

• POST /blockchainstorages : Create a new userBlockchain , the function calls the method

createStorageRecord() of Blockchain.java class.

• PUT / blockchainstorages: Updates an existing userBlockchain , the function calls the

method updateStorageRecord() of Blockchain.java class

• GET / blockchainstorages: get all the userBlockchains, the function calls the method

getAllStorageRecords() of Blockchain.java class.

• GET / blockchainstorages /:id : get the "id" userBlockchain, the function calls the method

getStorageRecord () of Blockchain.java class.

• DELETE / blockchainstorages /:id : delete the "id" userBlockchain, the function calls the

method deleteStorageRecord() of Blockchain.java class.

BlockchainPolicy entity

• POST /blockchainpolicy: Create a new userBlockchain , the function calls the method

createPolicyRecord() of Blockchain.java class.

• PUT / blockchainpolicy: Updates an existing userBlockchain , the function calls the method

updatePolicyRecord() of Blockchain.java class

• GET / blockchainpolicy: get all the userBlockchains, the function calls the method

getAllPolicyRecords() of Blockchain.java class.

• GET / blockchainpolicy /:id : get the "id" userBlockchain, the function calls the method

getPolicyRecord () of Blockchain.java class.

27

• DELETE / blockchainpolicy /:id : delete the "id" userBlockchain, the function calls the

method deletePolicyRecord() of Blockchain.java class.

4.1.3 Fabric proxy

The fabric-proxy module is responsible for the integration of the blockchain vINCI microservice with the

blockchain network components. The main functions of the fabric-proxy module are as follows:

• User management (creating and granting permissions to blockchain network through

certificates);

• Ensuring connection to the blockchain network, calling transactions and queries;

• Mapping functions and data formats from the REST API controller microservice to functions of

the blockchain network components.

The fabric-proxy interacts with the blockchain network by calling functions implemented in chaincode

(smartcontract). The chaincode is a program running on specified peers on the blockchain network.

Implementation of the vINCI chaincode was instantiated on the common communication channel and

installed on two endorsing peers (peer0.org1.example.com and peer0.org2.example.com).

Annex II presents implementation details of the fabric-proxy.

4.2 Blockchain platform validation tests

The preliminary validation tests have been performed to check correctness of blockchain service

implementation. The tests covers:

• integration of blockchain platform with the vINCI platform;

• blockchain microservice REST API function tests for the Userblockchain tests entity.

The blockchain microservice is a component of both the vINCI platform and the blockchain platform. To

integrate both platforms, it is necessary to import the blockchain microservice entity into the Gateway

module. Thanks to this, the data saved on the blockchain platform will be reached from the Gateway

front-end. The performed integration test confirms the correct integration of both platforms (see Annex

III).

The REST API tests were designed to verify the basic API functions in an integrated environment that

includes blockchain microservice, fabric-proxy module and blockchain platform. The tests are related to

operations on an example data entity defined in the blockchain microservice.

The following tests were performed based on python script as a client application using JSON encoder

and decoder and request library to generate HTTP method calls. The test results obtained (presented in

Annex III) confirm proper data exchange between three engaged entities.

28

5. Open platform approach
Communication with vINCI platform relies on commonly used HTTPS protocol. HTTPS provides

adequate security for data transfer (data encryption, validation of data sender and receiver, etc.), and

also high platform accessibility since HTTPS port (443) are usually not blocked by firewalls. vINCI

platform implements external interfaces that base on REST API with open standard JSON data format.

Using this API, 3rd party entities can interact with the platform in two ways:

a) by consuming data from vINCI platform;

b) by extending vINCI platform functionality with their own data sources/sensors (3rd Party Kit).

Therefore, we distinguish two categories of 3rd Party entities (see Figure 12):

1. Consumer - doctors, research entities, medical units: they are mainly interested in obtaining

health/diagnostic data of patients, statistics for a specific group of patients, history for a given

patient taking into account reported alarms, etc.

2. Data Provider- sensor providers: they aim to integrate their own sensors/devices with the vINCI

system.

Figure 12 The concept of the integration of the vINCI system with 3rd Parties services

We assume that Consumer entities uses the REST API limited mainly to GET calls. In few justified cases

it will be possible to allow using other methods, for example POST to provide own survey data to vINCI

system. Consumer will use the REST API for the Gateway, IOServer and Survey entities as well as

extended API provided by Analysis module that will be implemented in the further phase of the Project.

Gateway
(entities)

User
Device

User-alerts
Device-Alert

cammera-fitness

devicesIOServer
(entities)

SurveyData
WatchData
ShoeData

CameraMovData
CameraFitData

camera-movement

watch

shoe

Analysis Module

3rdParty
Consumers

3rdParty
Data

Providers

3drPartyKit

Survey
(entities)

SurveyData

GET

GET POST,PUT
DELETE

Data Storage

29

The Data Provider entities have access to API functions of all microservices. In addition, a separate

microservice need to be developed for the device/sensor supplied, along with a definition of specific API

functions (if necessary).

5.1 Technical aspects for accessing patient data from the vINCI platform by 3rd

Party entities

Patient data can be accessed by the 3rd Party using any HTTPS client software. The data download

process is based on REST API communication using HTTPS GET method calls.

To ensure communication security the authentication is performed via the NGINX HTTP-proxy server

(Release#1) or by blockchain service (Release#2).

The functions implemented on the vINCI platform in the REST API controller enable a number of options

for downloading patient data, including:

• obtaining data for a specified period of time – an example of a request is:

GET / users -extra/id/ medicalId / start = start_date & end = end_date – medical reports for

the specified user for the time period

• obtaining data for appropriate groups of patients, different in terms of sex and age – an example

of a request is:

GET / users -extra / medicalId / fromage = start_age & toage = end_age – medical reports

for the users in a given age range

Currently, the platform provides the basic set for the REST controller GET method (presented below).

Depending on the needs of 3rd Parties an additional methods with different parameters (enabling data

collection with detailed options) will be implemented.

The basic REST API available for 3rd Parties

GET call: Server_url / resource_path

Microservice Gateway

Entity Users

GET /users : get all users.

GET /users/authorities return a string list of the all of the roles

GET /users/login : get the "login" user

GET /users/aggregated: get all the associated users' info plus their status

GET /users/images: get all user images

Entity UserExtra

GET /user-extras - get all the userExtras

GET /user-extras/id -get the "id" userExtra

GET /user-alerts : -get all the userAlerts

GET /user-alerts/:id - get the "id" userAlert

30

Entity UserAlert

GET /user-alerts - get all the userAlerts

GET /user-alerts/:id -get the "id" userAlert

Entity Devices

GET /devices - get all the devices

GET /devices/type - get all watch the devices.

GET /my-devices -get a list of devices corresponding to the logged user

GET /devices/:id - get the "id" device.

Entity DeviceAlert

GET /device-alerts - get all the deviceAlerts

GET /device-alerts/:id - get the "id" deviceAlert

Microservice IOServer

Entity WatchData

GET /watch-data - get all the watchData.

GET /watch-data/count - count all the watchData

GET /watch-data/:id - get the "id" watchData

Entity ShoeData

GET /shoe-data - get the list of data for a shoe device id

GET /shoe-data/count - count all the shoeData

GET /shoe-data/:id : get the "id" shoeData

Entity cameraFitnessData

GET /camera-fitness-data - get all the cameraFitnessData

GET /camera-fitness-data/count - count all the cameraFitnessData

GET /camera-fitness-data/id -get the "id" cameraFitnessData

Entity cameraMovementData

GET /camera-movement-data - get all the cameraMovementData

GET /camera-movement-data/count - count all the cameraMovementData

GET /camera-movement-data/:id - get the "id" cameraMovementData

Microservice Survey

SurveyData

GET /survey-data - get all the surveyData

GET /survey-data/id - get the "id" surveyData

GET /survey-data/userExtra/{userExtraId}: get all the surveyData for userExtraId

GET /survey-data/userExtra/surveyId/{surveyId} - get all the surveyData for surveyId

GET /survey-data/userExtra/medicalId/{medicalId}- get all the surveyData for medicalId

31

5.2 Technical aspects of integration with 3rd Party data providers

A basic requirement for 3rd Party sensor vendor that wants to integrate with vINCI is to provide the

sensor/device with the REST API client that is capable to send data in JSON format.

Moreover, the following implementation work is required on the vINCI platform:

• Implementation of a new “3rdPatryKit” JHipster microservice on the vINCI platform;

• Update of the IOServer microservice by adding a new entity for storing data provided by the

3rdPatryKit microservice (if the new data does not match the existing entities);

• Implementation of the internal communication between microservices IOServer and 3rdPatryKit

using REST API (if the API already implemented by IOServer does not match new module

functionality);

• Update of the Gateway microservice for the data presentation of the 3rdPatryKit microservice data

in the gateway dashboard (if the new data does not match the existing entities);

• Update of the Analysis module for the new 3rdPartyKit data extraction and next proper handle by

analytical logic (if the new data does not match the existing entities).

We assume that the 3rd Party will have full access to the REST API functions (methods GET, POST,

PUT, DELETE) for the entity created for their microservice. This access will be based on the same

security rules as for Consumer type 3rd Parties.

32

Bibliography
[D2.5] D2.5: Report on technologies integration and lab technical validation of kits. vINCI Technical

Report

[D3.1] D3.1: Data Privacy Regulations and Security Requirements. vINCI Technical Report.

[D3.2] D3.3: Open data and model repository. vINCI Technical Report

[fgj] Java Fabric-proxy gateway. Webpage: https://github.com/hyperledger/fabric-gateway-java

[hfs] HyperLedger source code github repository: https://github.com/hyperledger/fabric-samples

Report

[hyf] Hyperledger Fabric – open source blockchain framework. Project webpage:

https://www.hyperledger.org/projects/fabric

[jwt] JSON Web Tokens. Webpage: https://www.jhipster.tech/security/#securing-jwt)

https://github.com/hyperledger/fabric-samples
https://www.hyperledger.org/projects/fabric
https://www.jhipster.tech/security/#securing-jwt

33

6. Annex I – HyperLedger terms definition
Orderer

Orderer (Ordering service) provides a shared communication channel to clients and peers, offering a

broadcast service for messages containing transactions. It's primary goal is to provide total order for

transactions published, cut blocks with ordered transactions.

Organization

Organizations are invited to join the blockchain network by a blockchain service provider. An organization

is joined to a network by adding its Membership Service Provider to the network. The MSP defines how

other members of the network may verify that signatures (such as those over transactions) were

generated by a valid identity, issued by that organization.

Peer

A network element that hosts a ledger and runs chaincode containers in order to perform read/write

operations to the ledger.

Channel

A channel is a private blockchain entity which allows for data isolation and confidentiality. A channel

defines specific ledger that is shared across the peers in the channel. In order to interact with the channel

transacting parties (peers, client applications) must be properly authenticated.

Smart Contract

The chaincode manages the ledger state through transactions invoked by client applications. In

Hyperledger Fabric, smart contracts are referred to as chaincode. Smart contract chaincode is installed

onto peer nodes and instantiated to one or more channels.

The process of placing a chaincode on a peer’s file system.

• Instantiate - The process of starting and initializing a chaincode application on a specific channel.

After instantiation, peers that have the chaincode installed can accept chaincode invocations.

• Invoke - Used to call chaincode functions. A client application invokes chaincode by sending a

transaction proposal to a peer. The peer will execute the chaincode and return an endorsed

proposal response to the client application.

Chain

The ledger’s chain is a transaction log structured as hash-linked blocks of transactions. Peers receive

blocks of transactions from the ordering service, mark the block’s transactions as valid or invalid based

34

on endorsement policies and concurrency violations, and append the block to the hash chain on the

peer’s file system.

Block

A block contains an ordered set of transactions. It is cryptographically linked to the preceding block, and

in turn it is linked to be subsequent blocks. The first block in such a chain of blocks is called the genesis

block. Blocks are created by the ordering system, and validated by peers.

Transaction

Invoke or instantiate results that transaction are submitted for ordering, validation, and commit. Invokes

are requests to read/write data from the ledger. Instantiate is a request to start and initialize a chaincode

on a channel. Application clients gather invoke or instantiate responses from endorsing peers and

package the results and endorsements into a transaction that is submitted for ordering, validation, and

commit.

35

7. Annex II – Classes and methods of fabric-

proxy sub-module.

Blockchain.java class (blockchain platform client) implements the following methods:

• createStorage() – the function builds new contract instance of the vinci chaincode and invokes

the function createStorageBlock () of the chaincode. It returns the entered record in the JSON

object format, if successful .

• getAllStorage()-– the function builds new contract instance of the vinci chaincode and invokes

the function querryAllStorageBlock() of the chaincode. It returns the JSON array of objects with

all record in the ledger, if successful .

• getStorage () – the function builds new contract instance of the vinci chaincode and invokes

the function queryStorageBlock()of the chaincode. It returns one record in the JSON object

format, if successful

• updateStorage() – the function builds new contract instance of the vinci chaincode and

invokes the function changeStorageBlock(), if successful.

• deleteStorage() – the function builds new contract instance of the vinci chaincode and

invokes the function deleteStorageBlock(), that delete one record.

• createPolicy () – the function builds new contract instance of the vinci chaincode and invokes

the function createPolicyBlock() of the chaincode. It returns the entered record in the JSON

object format, if successful .

• getAllPolicy()-– the function builds new contract instance of the vinci chaincode and invokes

the function querryAllPolicyBlock() of the chaincode. It returns the JSON array of objects with

all record in the ledger, if successful .

• getPolicy() – the function builds new contract instance of the vinci chaincode and invokes the

function queryPolicyBlock()of the chaincode. It returns one record in the JSON object format, if

successful

• updatePolicy() – the function builds new contract instance of the vinci chaincode and invokes

the function changePolicyBlock(), if successful.

• deletePolicy () – the function builds new contract instance of the vinci chaincode and invokes

the function deletePolicyBlock(), that delete one record.

StorageMapper.java class (mapping of data structures inside of fabric-proxy) implements the following

methods:

• getAllStorageMap() – maps the JSON array of the returned records from ledger to the

microservices ArrayList< BlockchainStorageDTO >

• postStorageMap() – maps the JSON object of the record entered to the ledger to the

microservices BlockchainStorageDTO structure

36

• getStorageMap() - maps the JSON object of the record read from the ledger to the

microservices BlockchainStorageDTO structure

• putStorageMap() - maps the JSON object of the record updated in the ledger to the

microservices BlockchainStorageDTO structure

PolicyMapper.java class (mapping of data structures inside of fabric-proxy) implements the following

methods:

• getAllPolicyMap() – maps the JSON array of the returned records from ledger to the

microservices ArrayList< BlockchainStorageDTO >

• postPolicyMap() – maps the JSON object of the record entered to the ledger to the

microservices BlockchainStorageDTO structure

• getPolicyMap() - maps the JSON object of the record read from the ledger to the

microservices BlockchainStorageDTO structure

• putPolicyMap() - maps the JSON object of the record updated in the ledger to the

microservices BlockchainStorageDTO structure

Design of vINICI chaincode covers two data structures (smartcontracts) that are saved as transaction

blocks. They are as follows:

SmartContract structure

type Storage struct {

 TransactionID string `json:"transactionid "`

 UserID string `json:"userid"`

 MedicalID string `json:"medicalid "`

 Timestamp string `json:"timestamp"`

}

SmartContract structure

type Policy struct {

 TransactionID string `json:"transactionid "`

 OrganizationID string ‘json””organiztionid”

 Org_signature ; string `json:"orgsignature"`

 Users_ signature; string `json:"usersignature “

 Access_key; string `json:"access_key "

 Timestamp string `json:"timestamp"`

}

37

8. Annex III - Blockchain platform validation

tests results

Integration test

Objective

The purpose of the test is to check the correctness of data (records stored in a ledger of the blockchain

platform) imported to the vINCI gateway front-end level.

Test procedure

The test procedure is as follows:

• Data initialization in the blockchain platform by calling the initLedger () function in the

blockchain network from the CLI docker container.

• Running the front-end gateway API from the administrator account and checking the data in the

UserBlockchain entity.

Expected results

It is expected that the data presented front-end gateway are consistent with blockchain platform data

(stored in CouchDB).

Test results

The Figure 13 and Figure 14 shows that the data were imported correctly . The records stored in the

blockchain database (couchDB) as key-value have id - key in the form of a string, which is stored in

objects of the vINCI platform as a numeric value. The value after the MED string is mapped, e.g.

MED12 string to the number 12.

Figure 13 Blockchain platform CouchDB database data

38

Figure 14 Data in gateway front-end (entity UserBlockchain)

REST API method tests

The purpose of the test is to verify the basic API functions in an integrated 3-module environment.

Test case 1 - GET all blockchain users

Tested method -GET/user-blockchains

Expected results

1. HTTPResponse with table of JSON object of all users.

2. Correct logs only from endorsing peers - the GET method called in the above scenario is mapped

to the queryAllMed() method of the fabric-proxy module, which calls a query to the blockchain

platform without creating a new transaction block. For this reason, only confirmation by endorsing

peers without validation logs are expected (there is no validation process).

Test results

The body of the HTTPResponse is compliant with the user's records saved on the blockchain platform:

[{"id":10,"firstName":"John","lastName":"Smith","gender":"male","phone":"765434566","address":"London

87","medicalID":20,"surveyID":11,"timestamp":"2020-05-

18T14:56:06.157Z"},{"id":11,"firstName":"David","lastName":"Brown","gender":"male","phone":"665434566","addr

ess":"Liverpool 25","medicalID":40,"surveyID":41,"timestamp":"2020-05-

18T16:56:06.157Z"},{"id":12,"firstName":"Michael","lastName":"Green","gender":"male","phone":"995434566","ad

dress":"Liverpool 87","medicalID":30,"surveyID":31,"timestamp":"2020-05-

19T16:56:06.157Z"},{"id":13,"firstName":"Ben","lastName":"Milner","gender":"male","phone":"387434566","addres

s":"Glasgow 5","medicalID":50,"surveyID":51,"timestamp":"2020-05-16T16:56:06.157Z"}]

The Figure 15 shows correct logs from the endorsing peer - peer0.org1.example.com that informs about

processing the chaincode vinci. The same logs were registered in the endorsing

peer0.org2.example.com representing organization 2 of the network.

Figure 15 Logs from peer0.org1.example.com

39

Test case 2 - GET the specific user method test

Tested method - GET/user-blockchains/13

Expected results

1. HTTPResponse with an JSON object of the user with specific id.

2. Correct logs from endorsing peers - The GET method called in the above scenario is mapped to

the queryMed() method of the fabric-proxy module.

Test results

The body of the HTTPResponse is compliant with the user's record saved on the blockchain platform:

{"id":13,"firstName":"Ben","lastName":"Milner","gender":"male","phone":"387434566","address":"Glasgow

5","medicalID":50,"surveyID":51,"timestamp":"2020-05-16T18:56:06.157Z"}

The logs from endorsing peers: peer0.org1.example.com and peer0.org2.example.com indicate correct

information about vinci chaincode processing.

Moreover, the correct result of the same method call from the gateway front-end (Figure 16)

Figure 16 The result of the GET method received in the gateway front-end

Test case 2 – POST method –create new user

Tested method – POST /user-blockchains/

Expected results

1. HTTPResponse with an JSON object of the user with specific id.

40

2. Correct logs from endorsing and validating peers. In this test scenario the transaction was

performed. For this reason, appropriate logs are expected from both endorsing peers and

validating peers informing about adding a transaction block.

Test results:

HTTPResponse

As a result, a message was received containing a JSON object compatible with the generated JSON

object:

{"id":14,"firstName":"Adam","lastName":"Clark","gender":"male","phone":"587434566","address":"Dover

57","medicalID":60,"surveyID":61,"timestamp":"2020-05-19T16:56:06.157Z"}.

The Figure 17 shows correct logs from the endorsing peer - peer0.org1.example.com that informs

about processing the chaincode vinci and validation on the new block. The peer1.org1.example.com

signalized also correct validation logs (Figure 18) . As a result, a new block (27) was created and

saved in blockchains of all the peers in the network.

Figure 17 Validation and processing logs from the endorsing peer - peer0.org1.example.com

Figure 18 Validation logs from the– peer1.org1.example.com

A new record (id=14) has been added to the database(Figure 19) and is noticed in the front-end

gateway(Figure 20).

Figure 19Information about new record in the gateway front-end

41

Figure 20 Information about new record in the blockchain database

Test case 4 – PUT method –update medicalID

Tested method – PUT /user-blockchains/

Expected results

1. HTTPResponse - just like for the POST method, with the medicalID field updated.

2. Correct logs from endorsing and validating peers informing about adding a transaction block.

Test results

HTTPResponse

{"id":14,"firstName":"Adam","lastName":"Clark","gender":"male","phone":"587434566","address":"Dover

57","medicalID":100,"surveyID":61,"timestamp":"2020-05-19T16:56:06.157Z"}

The endorsing peer - peer0.org1.example.com that informs about processing the chaincode vinci and

validation on the new block -28 (Figure 21). In the case of validating peer1.org1.example.com correct

validation block logs were received (Figure 22) .

Figure 21 Processing logs from the peer peer0.org1.example.com

Figure 22 Validation logs from the peer1.org1.example.com

The Figure 23 shows updated value of medicalID field in the record 14 noticed in the front-end

gateway and blockchain CouchDB.

42

Figure 23 The fields of the record 14 noticed in the front-end gateway and blockchain CouchDB after the PUT method

43

9. Annex IV - Installation/configuration

guides of the vINCI platform

9.1 Installation of the vINCI platform on NIT infrastructure

The document describes Installation/configuration guides of the vINCI platform, based on deployment

in NIT.

NIT’s deployment includes:

1. Network infrastructure (firewall, switches, DNS)
2. HTTP proxy – NGINX server (version 1.14.0)
3. vINCI platform

• modules implemented by ICI

• database – PostgreSQL (version 10.14)

The following figure shows the overall hardware architecture of the vINCI platform located in the NIT

(for development/testing purposes, platform modules and the database can be launched on the same

virtual machine).

9.2 Network infrastructure

Note: these modules are needed to make the platform available from the Internet – they are not

necessary for internal tests

44

NIT Firewall (maintained by the NIT IT center)

The basic firewall configuration includes:

• Configuration the external public IP address for the vINCI platform.

• Transition (NAT) the local address of vINCI platform to the public IP address.

• Limiting the ports exposed externally (only ports for ssh -22 and https -443 services are
opened)

DMZ (maintained by the NIT IT center)

The DMZ Includes the following:

• Switch network configured into one common VLAN with KVM switch installed on the vINCI
server platform

• DNS server - Domain names of the vINCI platform entered into the DNS are:

o www.vinci.il-pib.pl

o vinci.il-pib.pl

o www.vinci.itl.waw.pl

o vinci.itl.waw.pl

9.3 HTTP proxy – NGINX server

The NGINX server is responsible for the following security functions:

• SSL termination and proxy to the vINCI platform gateway module

• Maintaining certificates for HTTPS operation for domain names

• Level1: User Authentication based on the private key (SSL certificates)

• Level2: User Authentication based on login/password

Appendix 2 describes the data required to generate client SSL certificates.

For development work/testing it is suggested to limit authentication only to login/password option
(level2).

NGINX Installation and configuration at NIT:

Ubuntu Nginx installation:

sudo apt update

sudo apt install nginx

Check the installation status:

systemctl status nginx

Nginx configuration: configuration file - /etc/nginx/site-available/default

upstream vinci_platform {

 server 193.110.137.63:8080;

 }

http://www.vinci.il-pib.pl/
http://www.vinci.itl.waw.pl/

45

server {

 listen 443 ssl default_server;

 listen [::]:443 ssl default_server;

 server_name vinci.il-pib.pl;

 # access_log /var/log/nginx/example.com_access.log combined;

 # error_log /var/log/nginx/example.com_error.log error;

 ssl_certificate /etc/ssl/vinci/vinci.il-pib.pl.pem;

 ssl_certificate_key /etc/ssl/vinci/vinci.il-pib.pl.key;

 ssl_client_certificate /etc/ssl/auth/ca.pem;

 ssl_verify_client on;

 location / {

 auth_basic "Restricted";

 auth_basic_user_file /etc/nginx/.htpasswd;

 # proxy_redirect off;

 proxy_set_header X-Forwarded-User $remote_user;

 proxy_set_header Host $http_host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header Authorization "";

 proxy_pass http://vinci_platform;

}

}

Starting in service mode command

nginx service restart

9.4 vINCI server platform

The vINCI platform (software modules developed by ICI + PostgreSQL database) has been installed
on servers with Linux Ubuntu 18.04 and KVM virtualization system.

The vINCI platform can be run as a single virtual machine with the following characteristics:

• disk storage size - 40 GB

• memory size - 32 GB

• operating system - Linux Ubuntu 18.04 Bionic

Other required software

46

• Java – (Java version in NIT - OpenJDK Runtime Environment (build 1.8.0_242-8u242-b08-
0ubuntu3 ~ 18.04-b08)

• Node (Node version in NIT - v8.17.0)

• PostgreSQL – (PostgreSQL version in NIT 10.14)

• Docker - Docker (version in NIT - 19.03.0)

• The jhipster-registry - (https://www.jhipster.tech/jhipster-registry/)

The figure below shows the NIT’s vINCI platform. The modules developed by ICI are available at:
https://gitlab.com/vinci-aal

At the moment, the following ICI modules (microservices) have been installed at NIT testbed: camera-
movement, io-server, aggregator, survey, camera-fitness, shoe, watch, devices, gateway

Installation and launch of jhipster-registry

Clone source code from the GitHub jhipster / jhipster-registry repository
(https://github.com/jhipster/jhipster-registry).

Running

./mvnw (development mode)

./mvnw -Pprod package (production mode)

docker-compose -f src/main/docker/jhipster-registry.yml up (as docker container)

Installing the PostgreSQL database

https://www.jhipster.tech/jhipster-registry/
https://gitlab.com/vinci-aal
https://github.com/jhipster/jhipster-registry

47

sudo apt update

sudo apt install postgresql postgresql-contrib

For each of the above modules, it is required to create a user (with the password) and a PostgreSQL
database.

Configuration of PostgreSQL database (an example for watch microservice/module)

Step # 1: Add a Linux / UNIX user called watch

commands:

adduser watch

passwd watch

Step # 2: Becoming a superuser and connect to database server

Commands:

su - postgres

$ psql template1

Step # 3: Add a user called watch / password watch

command

template1 = # CREATE USER watch WITH PASSWORD 'watch';

Step # 4: Add a database called watch

commands:

template1 = # CREATE DATABASE watch;

Now grant all privileges on database

template1 = # GRANT ALL PRIVILEGES ON DATABASE watch to watch;

Step # 6: Test watch user login

In order to login as watch you need to type following commands:

$ su - watch

$ psql -d watch -U watch

Configuration of PostgreSQL authentication

Configuration of pg_hba.conf file that enables client authentication between the PostgreSQL server
and the client application:

In Ubuntu system the file location is: /etc/postgresql/10/main/pg_hba.conf

1.Modification - change the method to md5 for all users

2.Restart the postgresql service

ICI modules installation and configuration

48

1. Download the source codes of the modules from vinci repository https://gitlab.com/vinci-aal/
2. Information about installation procedure can be found in the README.md file in the main

directory of each module. If the module uses the PostgreSQL database, then you must run
PostgreSQL as the docker container machine.

Basic configuration: settings of the database and port number (the same for all modules)

For the production mode:

File /src/main/resources/config/aplication-prod.yml

spring:

 datasource:

 (settings database name, user and password)

server:

 port:

 (port number on which the service is running)

Configuration of data access - security.

It allows you to unblock access to data without user authentication

directory - src/main/java/default package folder/config/SecurityConfiguration.java

configure function – modification rules of HTTPRequest

Installation/boot using gradle

The following sequence for starting modules is required

1. jhipster-registry

2. gateway

3. other modules

Running individual modules is possible in 3 modes:

1. (development mode)

npm install (only for gateway module)

./gradlew

2.(production mode)

./gradlew –Pprod clean bootWar

java -jar build/libs/*.war – command to run in production mode

3.(docker container)

./gradlew bootWar -Pprod jibDockerBuild

docker-compose -f src/main/docker/app.yml up –d

https://gitlab.com/vinci-aal/

49

9.5 Access to the vINCI platform

In the NIT configuration, access to the platform is possible using the HTTPS protocol, and it is provided
through the NGINX proxy server, which:

1. requires client certificates (user.pem, user.key)
2. requires entering username and password

and next removes authentication header and redirects requests to the gateway module.

The data for generating client certificates is as follows:

• Country Name (2 letter code) []

• State or Province Name (full name) []

• Locality Name (eg, city) []:

• Organization Name (eg, company) [Internet Widgits Pty Ltd]

• Organizational Unit Name (eg, section) []

• Common Name (e.g. server FQDN or YOUR name) []

• Email Address []:

Logins and passwords should be configured after issuing certificates.

Simple test script in Python (GET and POST request to the platform) to test authentication
mechanism:

#!/usr/bin/env python3
import requests
import json

with open("watch_record.json", "r") as read_file:
 data = json.load(read_file)
jdata=json.dumps(data)
headers = {'Accept' : 'application/json', 'Content-Type' : 'application/json'}

r = requests.post('https://vinci.il-pib.pl/watch/api/records', data=jdata, headers=headers,
cert=('user.pem','user.key'), verify=True, auth=('login','password))
url = r.text
p = requests.get('https://vinci.il-pib.pl/api/users',cert=('user.pem',user.key'), verify= True,
auth=('login','password))

