

Active and Assisted Living Programme

AAL-2016 – Living with Dementia

Project Number

AAL-2016-049

“CARELINK for Dementia suffers and their community”

Deliverable D2.5

Solution Design

Authorised by: Reviewed by:

Gary McManus <Name>
WIT <Organization>

Authorised date: _31_/_10_/_2020

Work package: WP2 – Requirements and Design

Prepared By/Enquiries To:
Philip O’Brien (pobrien@tssg.org) – Waterford Institute of

Technology

Reviewer:

Status: Final

Date: 31/10/2020

Version: 1.0.0

Classification: Public

mailto:pobrien@tssg.org

 Solution Design
DN.n

Public/Confidential Deliverable 2 CARELINK

Project Funding Support

This project would not be possible without the support of the Ambient Assisted Living Joint Programme. The work
has been promoted under the project CARELINK, AAL-CALL-2016-049 funded by AAL JP, and co-funded by the
European Commission and National Funding Authorities of Ireland, Belgium, Portugal and Switzerland.

Partner Country National Funding Body Logo

WATERFORD INSTITUTE OF

TECHNOLOGY (WIT)

IRELAND ENTERPRISE IRELAND

INSTITUTO DE

DESENVOLVIMENTO DE

NOVAS TECNOLOGIAS

(UNINOVA)

PORTUGAL FUNDAÇÃO PARA A

CIÊNCIA E A TECNOLOGIA

U-SENTRIC BELGIUM IWT AGENTSCHAP VOOR

INNOVATIE DOOR

WETENSCHAP EN

TECHNOLOGIE

OPEN SKY DATA SYSTEMS

LTD

IRELAND ENTERPRISE IRELAND

AKADEMIE BERLINGEN SWITZERLAND FEDERAL DEPARTMENT

OF ECONOMIC AFFAIRS,

EDUCATION AND

RESEARCH EAER

CREAGY AG SWITZERLAND FEDERAL DEPARTMENT

OF ECONOMIC AFFAIRS,

EDUCATION AND

RESEARCH EAER

Disclaimer:

This document reflects only authors’ views. Every effort is made to ensure that all statements and information

contained herein are accurate. However, the Partners accept no liability for any error or omission in the same. EC

or AAL is not liable for any use that may be done of the information contained therein.

© Copyright in the document remains vested in the Project Partners.

 Document Title
D2.5

Public Deliverable 3 CARELINK

CARELINK Project Profile

Partners

WATERFORD INSTITUTE OF TECHNOLOGY (WIT) -

[COORDINATOR]
IRELAND

UNINOVA - INSTITUTO DE DESENVOLVIMENTO DE NOVAS

TECNOLOGIAS (UNI)
PORTUGAL

U-SENTRIC (USE) BELGIUM

OPEN SKY DATA SYSTEMS LTD (OSD) IRELAND

AKADEMIE BERLINGEN (AKA) SWITZERLAND

CREAGY AG (CRE) SWITZERLAND

Active and Assisted Living Programme
AAL-2016 – Living with Dementia

Contract No.: AAL-2016-049

Acronym: Carelink.

Title: CARELINK for Dementia suffers and their community.

URL: www.carelink-aal.org

Twitter @Carelink_AAL

LinkedIn Group Carelink

Facebook Page www.facebook.com/Carelink

Start Date: 01/08/2017

Duration: 30 months

http://www.carelink-aal.org/
http://www.facebook.com/AquaSmartdata

 Document Title
D2.5

Public Deliverable 4 CARELINK

Document Control

This deliverable is the responsibility of the Work Package Leader. It is subject to internal review and formal
authorisation procedures in line with ISO 9001 international quality standard procedures.

Version Date Author(s) Change Details

0.1 DD/MM/YYYY Philip O’Brien Table of Content.

0.2 DD/MM/YYYY Philip O’Brien Initial draft for review.

0.3 DD/MM/YYYY Unonova Hardware updateds

0.4 27/10/2020 Philip O’Brien Ready for release

1.0 31/10/2020 Gary McManus Approved version release.

 Document Title
D2.5

Public Deliverable 5 CARELINK

Executive Summary

Objectives

The Solution Design document builds the basis for all research and development work of the project. It documents

the system and software architecture to be used for this solution. Each component will be integrated into the

overall system architecture.

Results

 Document Title
D2.5

Public Deliverable 6 CARELINK

Table of Contents

1 INTRODUCTION.. 8

2 ABBREVIATIONS AND ACRONYMS .. 9

3 System Architecture ... 10

3.1 Overview .. 10

3.2 Hardware .. 10

3.2.1 Energy Management Profiles.. 12

3.3 Software ... 12

3.3.2 Data Flow .. 14

3.3.3 The Core Services .. 15

3.4 Communications ... 37

3.5 Privacy and Security .. 37

4 Data and API Design .. 38

4.1 Data Model ... 38

5 Supporting Infrastructure ... 40

6 CONCLUSIONS .. 41

 Document Title
D2.5

Public Deliverable 7 CARELINK

TABLE OF FIGURES

Figure 1 Prototype Boards .. 11

Figure 2 High-Level Platform Architecture.. 14

Figure 3 User Service Swagger Documentation ... 16

Figure 4 PwD Outside Safe Zone .. 17

Figure 5 Python Point-in-Polygon Code .. 18

Figure 6 Hallmark Patterns of Wandering ... 18

Figure 7 Heatmap showing repeating points as increase in colour intensity 19

Figure 8 Entropy Calculation for GPS Trace .. 20

Figure 9 Route Prediction Architecture .. 21

Figure 10 Data Generation Code .. 22

Figure 11 Sample Routes ... 22

Figure 12 Model Architecture ... 25

Figure 13 Challenging Routes Dataset .. 27

Figure 14 Parameter Grid ... 28

Figure 15 Training History .. 29

Figure 16 Confusion Matrix .. 30

Figure 17 ROC AUC Plot ... 31

Figure 18 Dynamic Predictions ... 32

Figure 19 Twilio Dashboard .. 33

Figure 20 SMS Alert Template .. 34

Figure 21 Graylog Dashboard ... 35

Figure 22 JWT Example ... 37

Figure 23 Carelink Ontology Model Diagram .. 38

Figure 24 Data Centre Interior ... 40

 Document Title
D2.5

Public Deliverable 8 CARELINK

1 INTRODUCTION

This deliverable aims to present a description of the complete Carelink solution, describing the software and

hardware components and the communication between them. There is also a detailed explanation of the route

prediction research that was carried out.

 Document Title
D2.5

Public Deliverable 9 CARELINK

2 ABBREVIATIONS AND ACRONYMS

Abbreviation Description

PWD Person with Dementia

IoT Internet of Things

LoRa Long Range Radio

BLE Bluetooth Low Energy

GNSS Global Navigation Satellite System

LTE Long-Term Evolution

GPRS General Packet Radio Services

MQTT Message Queuing Telemetry Transport

REST Representational State Transfer

SMS Short Message Service

UI User Interface

JWT JSON Web Token

AI Artificial Intelligence

ML Machine Learning

DL Deep Learning

 Document Title
D2.5

Public Deliverable 10 CARELINK

3 System Architecture

A key philosophy of this project is that the software, while obviously crucial, is simply the medium with

which we realise the Carelink vision. The project is about delivering an innovative solution to the problem

of location monitoring for dementia sufferers, not about simply delivering software. To this end we make

use of open-source software where possible, saving development effort for the areas where real innovation

can be realised.

3.1 Overview

3.2 Hardware

The Carelink localisation solution is constrained by the needs of the targeted user group, which include

elder people, in most cases with some degree of dementia.

To fulfil those needs, it is necessary to maximize the following requirements:

• Small Form Factor - to enable the integration and adaptation of the hardware to a desirable piece

of clouting or personal wearable;

• Extended Autonomy - to provide commodity and reasonable uptime for an extensive usage (from

a week up to a month), using ultra low-power hardware;

• Extended Range - resilient to movement and adaptable to changes in the topology of the

surroundings;

• High Availability - to ensure critical communications are always received, regardless of the

conditions;

One of the hardest trade-offs of a small form factor device is the limitation of the available energy capacity.

In order to maximize the usage of the battery, a solution of adaptable energy profiles was envisioned.

Each energy profile dynamically changes the actuation of the multiple components of the hardware

(sensors, communication radios, localisation modules, etc), depending on the conditions of utilization of

the device and the profile of the user (the type and safety of the current location, the time of the day, the

remaining battery capacity, the available communication networks, and if it is accompanied by a carer).

By maximizing the correlation of the external conditions to the appropriate usage of the components, it is

possible to extend the autonomy of the device and at the same time increase the robustness and resilience

of the tracking solution.

To maintain a critical, high availability, localisation solution, it was required to use multiple technologies

for both the communications and localisation techniques.

For the communications, the use of emerging, low-power, IoT technologies such as Narrow-Band IoT (also

known as LTE-NB), LoRa, Bluetooth Low Energy (BLE) and Wi-Fi, resulted in a distinct range of available

networks, capable of coverage in different topology environments: urban, rural, outside, and indoor.

Likewise, for the localisation, besides the Global Navigation Satellite System (GNSS) module (compatible

with the GPS, GALILEO, and GLONASS constellations), a multilateration approach was also deployed with

 Document Title
D2.5

Public Deliverable 11 CARELINK

the resource of the LoRa network, as well as the use of assisted location services (using available Wi-Fi

Access Point's data).

If the device loses coverage from a given technology in use, it is capable of independently falling-back to

a better suited one, thus ensuring constant availability.

Multiple external factors can influence the communications and localisation technologies (signals

interference’s, noise, reflections, delays; different topology environments: urban, rural, outside, indoor;

etc).

Mitigation of (almost) all disruptive influences and behaviours of hardware operations required continuous

testing in real conditions, and real-time iteration and maintenance of the hardware operations (such as

implementing LoRa as a fall-back method for areas with poor NB-IoT and GPS coverage). Surpassing

hardware and firmware limitations, and shortcomings of the devices (such as random failures), was only

possible with the implementation of a self-recovery solution. In the end, it served to demonstrate the

limitations of the Small Form Factor hardware and the future need for a custom designed solution.

The hardware design went through several iterations and is described in detail in Deliverable D3.3 but a

description of the second stage iteration will be provided here. This iteration of the prototype was based

on board sizes of approximately 55mm x 22mm e.g. Pycom fipy and Sodaq Sara boards

Figure 1 Prototype Boards

The availability of the boards and respective supporting documentation, their size and footprint,

technological capabilities and usability in user trials, were the determining factors for choosing the boards

to be used in the field trials. Thus, the Pycom Fipy + Pytrack combo and the Sodaq Sara SFF R412M were

the chosen boards.

The Pycom combo was chosen due to the greater number of radio technologies, 6, that provide multiple

fallback capabilities in case one technology fails. The Sodaq R412M was chosen for having the smallest

size footprint, while also having one fallback communication option, from LTE to GPRS.

 Document Title
D2.5

Public Deliverable 12 CARELINK

3.2.1 Energy Management Profiles

To optimize the Carelink device's power autonomy, the configuration of each device's components

(communication, tracking and sensors) is modified by the platform, using a set of Energy Profiles that

adjust the modes of operation to the conditions of the PwD.

Using the platform as a manager of the energy settings has three major benefits. First, it frees the devices

from the processing required to determine the conditions to apply each profile, which by itself already

saves a considerable amount of power. Secondly, it enables tweaking the components configurations

remotely, in real-time, without the need to recall the devices to update the settings physically. Thirdly, it

empowers the Carelink system with the possibility to adjust the Energy Profiles of a device to the respective

PwD’s usage habits, by pre-emptively adapting the configurations to regular actions, creating a

personalization of the system around the PwD needs.

Depending on the conditions the PwD is in, there is a need for a higher or lower interval of time, of the

status messages sent between the device and the platform, or from the data polled by the device’s sensors.

These conditions can be the “Location” of the PwD, the “Time” of the day, if the PwD is “Accompanied”

by a carer, and the overall “Wellbeing” of the PwD.

Again, this implementation is described in detail in D3.3.

3.3 Software

Early on we decided we would follow a microservices approach. Microservices are small, autonomous

services that work together. Many organisations have found that by embracing fine-grained, microservice

architectures, they can deliver software faster and embrace newer technologies. More importantly,

however, microservices give us significantly more freedom to react and make different decisions, allowing

us to respond faster to the inevitable change that impacts all of us. (Newman, 2015)

Common characteristics of a microservice architecture are

• Componentisation via services – treat each service as a component that can be independently

deployed

• Organised around business capabilities – take a broad stack approach to the implementation

of software, including UI, persistent storage etc.

• Products not projects – rather than handing over a component for maintenance when complete,

the team instead takes ownership of that component for its lifetime

• Smart endpoints, dumb pipes – services own their own domain logic and should be as

decoupled and cohesive as possible. Inter-service communication should be as simple as possible

using simple REST services, or lightweight messaging

• Decentralised governance – or use the right tool for the job e.g. .NET/react for the frontend,

Python for machine learning etc.

• Decentralised data management – services own their own data

 Document Title
D2.5

Public Deliverable 13 CARELINK

• Infrastructure automation - closely tied to continuous delivery, microservices are simpler to

rest and thus to deploy, since they are highly decoupled

• Evolutionary design – facilitates rapid evolution of a system through the replaceable, or even

transitory, nature of components. If the services are sufficiently granular and properly decoupled,

only select services need to be upgraded/replaced. This is particularly appealing in the context of

Carelink as we develop more sophisticated location tracking algorithms.

In the context of a project like Carelink, the benefits of such an approach are numerous, the most notable

being that

1. Distributed teams can collaborate more effectively, without being bound by adherence to the same

tools/technologies

2. The project can adjust its trajectory more easily, as new data emerges from user trials, and market

research

Figure 2 shows the Carelink implementation of a microservices architecture with thirteen distinct services.

Integration is obviously paramount when dealing with multiple services. Since communication between

services can be both synchronous and asynchronous, we utilise two approaches

• Messaging

o Message Queuing Telemetry Transport (MQTT) as a messaging protocol

• REST

o Some services will need to communicate synchronously so transporting data as JSON via

REST is the most sensible way to go

When it comes to storing data, two approaches are used

• An immutable data store for end-user data built on Postgres

• Each microservice has the option of also using their own datastore where appropriate

Each microservice is containerised using Docker, and these containers are orchestrated using Docker

Compose.

https://www.postgresql.org/
https://www.docker.com/

 Document Title
D2.5

Public Deliverable 14 CARELINK

Figure 2 High-Level Platform Architecture

3.3.1 Messaging

A requirement of the Carelink solution was a lightweight messaging protocol due to the fact that

maximization of energy consumption can require reducing the load and processing power on the device,

using the platform whenever possible. The proposed protocol, MQTT, satisfies these conditions and

integrates easily with the platform.

The MQTT specification is detailed in Appendix 2 in D3.3

3.3.2 Data Flow

The typical flow of data through the platform is straightforward

• Location data from a Carelink device is transmitted from the device to the backend platform

• This data is transmitted using the MQTT protocol

• The Tracking service listens for data arriving via MQTT and when this occurs it analyses the location

data to see if an alert is necessary

• If an alert is warranted the Tracking Service publishes a message to the Alerts topic in MQTT,

which is picked up by the Notification service

• The Alerting service then triggers an SMS notification to the carer of the PwD

 Document Title
D2.5

Public Deliverable 15 CARELINK

3.3.3 The Core Services

3.3.3.1 Web Service

The user interface will be provided by the web service. The primary UI will be a responsive web application,

permitting use from a browser, but also useable from devices.

The web service, i.e. the front-end, is described in detail in D3.2 so there is no need to duplicate the

description here, although we will include the technology listing so all technologies for the platform can

be found in this one document. The important point in the context of the broader platform is the frontend

is treated like all the other Carelink microservices, i.e. a self-contained software component that can be

developed and deployed independently.

The GUI Interface is built with the following modern technologies:

• HTML5 and CSS3

• Twitter Bootstrap 4 as CSS Framework

• Javscript ES6, ReactJS with Redux

• .NET Core for routing and hosting purposes

• SASS

• Webpack for JavaScript code compile automation

Every time the GUI retrieves/sends information it needs to connect to the API by sending JWT token

stored in browser’s location storage after successful login process. The UI app is built with HTML, CSS and

JavaScript. It uses responsive patterns so that it is a mobile friendly application.

3.3.3.2 User service

The User service exposes an API to facilitate the following

• User registration

• User authentication/authorisation (via JSON Web Tokens as described in section Error! Reference

source not found.)

• Retrieve/update carer details

• Retrieve/update PwD details

• Retrieve/update Location details

• Retrieve/update Device details

• Retrieve/update Alert details

• Retrieve/update Zone details

• Retrieve/update Route details

• Retrieve/update Energy Profiles

 Document Title
D2.5

Public Deliverable 16 CARELINK

The API is documented using Swagger following the OpenAPI Specification (OAS) v3. The OpenAPI

Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs which allows both

humans and computers to discover and understand the capabilities of the service without access to source

code, documentation, or through network traffic inspection.1

Figure 3 shows a screenshot of the online swagger documentation (only some of the API endpoints are

visible).

Figure 3 User Service Swagger Documentation

1 https://swagger.io/specification/

 Document Title
D2.5

Public Deliverable 17 CARELINK

3.3.3.3 Tracking Service

As described in Section Error! Reference source not found. the Tracking Service listens for messages

on particular MQTT topics, and when location data is being transmitted to the platform, it is analysed to

detect if that PwD is wandering.

The most fundamental level of analysis focuses solely on whether or not a PwD that is mobile is within a

boundary that has been defined to represent a safe zone. This zone(s) is created by the carer and/or the

PwD using the web frontend and essentially says “once the PwD is moving in this zone everything can be

considered fine, but if they leave this zone an alert must be sent”.

Take the example shown in Figure 2 where the four blue markers represent the boundary of a safe zone.

The red marker, representing the location of the PwD, is outside of the zone and so in this instance an

alert would have been triggered. This example is simplified just to visualise the concept, such a small safe

zone would clearly be draconian in terms of how restrictive it is.

Figure 4 PwD Outside Safe Zone

What at first seems a very easy problem to address, actually has some technical nuances. It is a problem

known as the Point-in-Polygon problem, and before the location points can be used, they must first be

transformed from the GPS coordinate system (3D) to a cartesian coordinate system (2D). This use of

specific geographical projections is vital to ensure accurate analysis. To achieve this we make use of the

Python package, Shapely.2 A snippet of this code is shown in Figure 5 showing how Shapely allows us to

perform both the coordinate transformation, as well as the point-in-polygon detection.

2 https://pypi.org/project/Shapely/

 Document Title
D2.5

Public Deliverable 18 CARELINK

Figure 5 Python Point-in-Polygon Code

3.3.3.4 Analysis Service

There are several different types of analysis that we planned to use to best manage wandering behaviour.

The failsafe level i.e. safe-zone detection is implemented by the Tracking Service as described in Section

3.3.3.3.

3.3.3.4.1 Anomaly detection in GPS traces

Figure 6 shows a representation of some of the navigation patterns that have been observed during a

wandering event (Martino-Saltzman, Blasch, Morris, & McNeal, 1991).

Figure 6 Hallmark Patterns of Wandering

We began developing algorithms to classify the three main wandering patterns i.e. Pacing, Random, and

Lapping. The first pattern we decided to address was Pacing, i.e. repeating back and forth along a route.

We took inspiration from (Xiang, Li, & Zhou, 2011) in which the authors used the concept of Entropy to

detect distributed denial of service (DDoS) attacks. They calculate entropy using Equation 1.

Equation 1 Generalised Information Entropy

 Document Title
D2.5

Public Deliverable 19 CARELINK

Essentially what this gives is a figure representing the level of unique information in a dataset. In an

extremely simplified example comparing two datasets D1, and D2, where D1 = [1, 2, 3, 4, 5] and D2 =

[1, 1, 1, 1, 1] the entropy score for D1 would be higher because there is more information represented in

the set, rather than repeating values in D2. It calculates the probability of points occurring in a dataset.

Those occurring more frequently have less salience.

We realised that by applying this concept to the analysis of GPS data, if the PwD began pacing, then as

the GPS points repeat the entropy score should drop.

We tested this against the Microsoft Geolife GPS Trajectory Dataset3. Figure 7 shows a sample trace from

this dataset. A heatmap is used to highlight repeating points i.e. as the colour of the trace goes from green

to red this indicates that the route is being repeated. So, the pacing section of the route is the red part.

Figure 7 Heatmap showing repeating points as increase in colour intensity

Figure 8 shows the result of our pacing detection algorithm. For each new GPS point reported, the

algorithm calculates the entropy score (represented by the blue line in the figure). As soon as the pacing

begins the entropy drops and continues to drop until the pacing stops. This pacing correlates to the

highlighted region in the figure.

3 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/

 Document Title
D2.5

Public Deliverable 20 CARELINK

Figure 8 Entropy Calculation for GPS Trace

What this means is that if a PwD begins pacing while walking the algorithm can detect this in real-time

and alert if appropriate. Having brought the pacing detection to this stage our plan was to test it further

and then develop complementary algorithms to detect both Random and Lapping patterns. At this stage,

however, we were also considering the problem of route prediction i.e. rather than just classifying the

behaviour of the PwD while they are walking, can we predict their likely destination. Discussing this with

the Carelink reviewers there was broad agreement that although this would be a very challenging problem,

it had great potential. We then made the decision to direct our focus here rather than continuing the

behaviour classification.

3.3.3.4.2 Route Prediction

In the TSSG we had previously applied Deep Learning to sequence prediction for forecasting problems.

It was our belief that a similar DL approach could be very effective in this regard. The thinking was that if

the system could learn the common routes they take, it should quickly be able to classify if they are on a

route leading to a common destination. If this is not the case, then it is implied that they are not going

towards a known destination and so may be wandering. There are obviously many questions to try and

address with such a problem but having discussed with the reviewers the potential merit in taking on this

challenge we decided to factor it in to our work.

This ML-based sub-system aims to classify the normal routes a PwD usually takes from the routes that

they might take when they get lost during a wandering episode. Eventually, predicting the destination a

patient is heading to, as early as possible, based on the real-time changes of their location.

The Route Prediction System architecture consists of 5 modules, as shown in Figure 9

 Document Title
D2.5

Public Deliverable 21 CARELINK

Figure 9 Route Prediction Architecture

 Document Title
D2.5

Public Deliverable 22 CARELINK

Data Generator

Even with the trials that were planned pre-covid we believed we could not record enough real data to

experiment with an AI algorithm such as this. So, we decided to generate realistic, synthetic data to test

our hypothesis, and the hope was then to capture as much real data as possible during the trials and

asses how the algorithm would perform.

This module provides the functionality to generate the highly customisable dataset of simulated routes

and destinations taken by a person. A user can specify the number of main routes, the number of sub-

routes and the number of destinations, in addition to the radius of the zone those routes should be in.

The code in Figure 10 shows a simple example of how to generate 6 routes and 6 destinations within a

zone of radius 50m (obviously not realistic, just for the purpose of illustration). Figure 11 shows the result

of running this.

Figure 10 Data Generation Code

Figure 11 Sample Routes

 Document Title
D2.5

Public Deliverable 23 CARELINK

Data Pre-processor

This module applies the required pre-processing on the Routes Dataset, namely

1. Padding: pads the sequence of routes with zeros to make them all of same length.

2. Features Scaling: since routes are dynamic and vary in their length and coordinates, sequence

scaling might be necessary to bring high numbers within a consistent numeric range. Available

scaling’s are normalization, standardization, robust scaling, maximum absolute value scaling.

3. Label Encoding: encodes labels with value between 0 and n_classes-1 in order to convert non-

numeric values to numeric ones.

4. OneHot Encoding: encodes categorical integer features as a one-hot numeric array to suit for

the categorical cross-entropy loss function.

5. Dataset Splitting: split arrays or matrices into random train and test subsets.

ML Model

This module defines the logic of the model and builds it. As well as facilitating the following functions:

1. Train: trains the model fully on a given dataset and evaluates on a ratio of observations taken

from the end of the data as a cross-validation split.

2. Partial Train: partially trains the model on a given dataset where routes are obtained separately

(i.e. online training).

3. Predict: predicts the class probability of given route sequence and returns it as a vector.

4. Reconstruct: reconstructs the model architecture in case a new destination is added or an existing

one removed. It transfers parts of the original trained model to the new model.

Performance Analysis

This module provides the most important dynamic evaluation tools for multi-class routes classification,

namely:

1. Plot Training History: plots the training history e.g. training accuracy, training loss, validation

accuracy, validation loss.

2. Plot ROC Curve and AUC Scores: compares the sensitivity vs specificity i.e. compares the true

positive rate and false positive rate.

3. Plot Confusion Matrix: Summarizes the performance of the model for a better idea of what the

model is getting right and what types of errors it is making.

4. Create Classification Report: builds a text report showing the main classification metrics e.g.

accuracy, precision, recall, F1-Score, support, macro average, and weighted average.

Routes Utilities

A utilities module providing a variety of helper functions including GridSearchCV and Early Stopping

Callback

 Document Title
D2.5

Public Deliverable 24 CARELINK

1. GridSearchCV: performs exhaustive search over specified parameter values for the routes model

on one, very few, or a complete set of routes. It returns a dictionary of the best model and its

information along with best parameters (based on the overall average performance).

2. EarlyStopping: a callback that terminates training when one or all metrics reach the specified

baseline(s). It is very useful to avoid overfitting and underfitting, as well as terminating training

once the model has learned enough. So, no more redundant training epochs or divergence after

convergence.

 Document Title
D2.5

Public Deliverable 25 CARELINK

Model Logic and Architecture

Figure 12 Model Architecture shows the overall model architecture and its logic. The convolution layer

here is used for extracting local sub-sequences from the route main sequence and to identify local patterns

within the window of convolution i.e. augmenting sequence with its subsequence’s based on the number

of filters specified.

Figure 12 Model Architecture

 Document Title
D2.5

Public Deliverable 26 CARELINK

Stacking LSTM hidden layers makes the model deeper, more accurately earning the description as a deep

learning technique. Since each LSTM is defined mainly by its number of units, which specifies the capacity

of the LSTM memory, the number of units plays a critical role in LSTM learning quality. If the number of

units is too large, convergence will be faster, but it will be prone to overfitting. On the other hand, if the

number of units is too small, it takes longer to converge and will be prone to underfitting. Therefore, we

build 3 LSTMs with 3 different memory capacities so each one can learn differently and cope with the

different sequence lengths.

The first LSTM has lesser memory capacity, so it can perform well on small sub-sequences. However, it is

bi-directional so it can see the past and the future of the sequence steps context in the route for better

classification. The second LSTM has bigger memory and the third has the biggest among them all so it

can remember long routes.

Next we have a Global Average Pool (GAP) to summarize the cumulative contribution effects of the entire

sequence so it allows to have sequences of any length, it does that by taking an average of every incoming

feature map. This GAP acts as a structural regularizer, which natively prevents overfitting for the overall

structure.

Finally, there is the Activation Layer which is responsible for transforming the summed weighted input

from previous layer into an output (i.e. prediction). If the number of destinations is 1, a sigmoid and a

binary cross-entropy are selected automatically as an activation function and loss function respectively.

Whereas if the number of destinations is greater than 1 (as would be expected), a softmax and a

categorical cross-entropy are selected.

 Document Title
D2.5

Public Deliverable 27 CARELINK

Experiments

Since the trials were greatly restricted due to the Covid-19 pandemic the route prediction had to be tested

using synthetic datasets as described previously. Even though this was far from ideal we did strive to test

using very challenging datasets where the routes highly overlap as illustrated in Figure 13. There are 30

destinations and 70 main routes which extremely overlap.

Figure 13 Challenging Routes Dataset

 Document Title
D2.5

Public Deliverable 28 CARELINK

30 sub-sequences were created, where each sequence length is only 50% of its corresponding main route,

for validating the system. In order to search for the best model, we searched through the following

parameter grid

Figure 14 Parameter Grid

After running the GridSearchCV on the above parameters grid using an early stopping configuration, the

following best set of parameters were found (non-important parameters omitted)

• units: 50

• optimizer: Nadam

• n_filters: 64

• kernel_size: 10

• recurrent_dropout: 0.0

The reason we performed a GridSearchCV is because the best optimizer, LSTM memory capacity, and

number of filters in CNN etc. differ in different scenarios and on different datasets. Although the above

parameters were the best in this situation (e.g. the best optimizer found to be Nadam), repeating the

experiment on different datasets might well yield quite different results because there is no one solution

to every situation.

 Document Title
D2.5

Public Deliverable 29 CARELINK

Below are included some of the results of running this experiment.

Figure 15 Training History

 Document Title
D2.5

Public Deliverable 30 CARELINK

Figure 16 Confusion Matrix

 Document Title
D2.5

Public Deliverable 31 CARELINK

Figure 17 ROC AUC Plot

 Document Title
D2.5

Public Deliverable 32 CARELINK

Dynamic Predictions

An important feature of such an algorithm is its ability to quickly determine the likely destination a user

is going towards. To test this, we picked arbitrary routes and attempted to predict the sub-sequences

along the way, starting from the original point towards the destination with 2 steps taken before the

next prediction. Essentially, we are simulating a PwD moving towards some destination (destination ‘A’

in the example below) and checking in real-time how early the AI model can guess the correct

destination as the patient moves, taking into consideration the complexity of the model and the

overlapping of routes.

Figure 18 Dynamic Predictions

 Document Title
D2.5

Public Deliverable 33 CARELINK

As shown in the preceding example the dynamic prediction works very well. The model could predict the

correct destination (‘A’) after only 7 steps4, 29% of the overall route distance.

3.3.3.5 Alerting Service

The Alerting Service is quite straightforward. It listens to the ‘alerts’ topic on MQTT and sends an alert if

requested. We investigated several different techniques for notifications from SMS, to Web Push

notifications, to native app notifications. We believe that the most useful (in terms of impact, urgency,

and adoption) are SMS notifications. We trialled both Amazon Simple Notification Service

(https://aws.amazon.com/sns/) and Twilio (https://www.twilio.com/). For ease of use we proceeded with

Twilio, which means that with just a few lines of code we can send texts. The SMS sent by Twilio includes

a link that brings the carer directly to a map highlighting the location of the PW.

Figure 19 Twilio Dashboard

4 ‘steps’ represent coordinate updates of a route, not physical steps taken

https://aws.amazon.com/sns/
https://www.twilio.com/

 Document Title
D2.5

Public Deliverable 34 CARELINK

Figure 20 SMS Alert Template

3.3.3.6 Proxy Service

We began by using Nginx as a proxy service that acts as a reverse proxy to any of the other microservice

APIs. We then switched to Traefik which is a leading modern reverse proxy and load balancer that makes

deploying microservices easy. Traefik intercepts and routes every incoming request to the corresponding

backend services. In terms of security benefits its supports SSL termination and we use it with Let’s Encrypt

for automatic certificate generation.

 Document Title
D2.5

Public Deliverable 35 CARELINK

3.3.3.7 Logging Service

An important cross cutting concern for any system is logging. We had originally looked at implementing

the Riemann monitoring framework as discussed in D4.2, but on further consideration we decided it was

better to consider logging and monitoring as two distinct services. Sentry was used as a monitoring

platform and for logging we opted for Graylog. This seamlessly collects, enhances, stores, and analyses

log data from the various Carelink services. It is particularly useful as a debugging aid for device/platform

communications.

Figure 21 Graylog Dashboard

 Document Title
D2.5

Public Deliverable 36 CARELINK

3.3.3.8 Supporting Services

In addition to the services described in the previous sections there were a number of additional services.

These used the official Docker images and so are just listed here for completeness.

• Eclipse Mosquitto as the MQTT broker

• Swagger UI to host the API documentation

• Postgres as the database, with the PostGIS spatial database extender

• Redis as a cache

• Node-RED to enable communication using LoRa as well as using wifi geo-location services to assist

with tracking. It will be used in the backend to do data processing of the packets received by The

Things Network (TTN). The devices will communicate through LoRa with a gateway. This gateway

will forward the packets to TTN, which will then communicate by MQTT to Node-RED, which in

turn will communicate by MQTT with the Carelink platform. Node-RED is also used to process the

‘status’ messages (that are published in the MQTT broker, with a field containing the Wi-Fi access

points that are near the device), which will make use of 3 Wi-Fi location API’s to determine an

“assisted” location, complementary to the GPS. This will enable the Pycom devices to have one

more alternative to the GPS, in case of failure.

 Document Title
D2.5

Public Deliverable 37 CARELINK

3.4 Communications

3.5 Privacy and Security

Main points regarding privacy are detailed in D2.3. All communication between the web service and the

platform is done over encrypted, authenticated, and authorised channels.

The decoupled nature of the services described in the previous section bring many benefits, but they also

introduce complexity chief among which is how to secure the services without introducing dependencies

and breaking the decoupling.

The first line of security is SSL. All traffic to/from the Carelink application will be encrypted – no information

between the application and client should be sent in the clear. This mitigates against man in the middle

attacks and prevents sensitive information from being sniffed.

Access to the Carelink platform will be further restricted to authorised users. Users will have to authenticate

themselves to the system in a Single Sign On (SSO) mechanism which will require that the user be

registered (this happens through the User Service API).

Upon successful authentication, a user session is created which will be maintained until such time as they

sign out, or the session expires. The session will maintain a user context which will be attached to every

request from the client. Carelink will use JSON Web Tokens (JWT) as specified in RFC7519 to secure inter

service requests and provided the user context to services. The token will encrypt and sign the user

context using an RSA key pair. On receipt, a service can validate the source of the request via the public

key and thus have access to the context. Furthermore, the token can be passed on verbatim to any

secondary service that needs to be called to complete the request. These tokens will have a limited lifetime,

which will mitigate against misuse.

Figure 22 JWT Example

 Document Title
D2.5

Public Deliverable 38 CARELINK

4 Data and API Design

4.1 Data Model

The Carelink Ontology model represents the conditions, rules and assertions, required for the

interoperability, configuration and management of the user’s, hardware feature’s and device’s profiles.

Depicted in Figure 23, is a simplified diagram of the ontology model, where the classes are represented

in yellow, their respective datatype properties are represented in green, and the object properties are

represented in blue, which characterize the relationships and rules of the classes. The cardinality of each

relation, either of the datatype or object properties, is represented as mathematical inequalities over the

arrows.

Figure 23 Carelink Ontology Model Diagram

 Document Title
D2.5

Public Deliverable 39 CARELINK

There are seven proposed primary classes, namely User, EnergyProfile, Location, Device, PwDProfile,

Component and ComponentFeatures.

The User class represents the identification of the target audience of the Carelink system, i.e. the PwD

and the Carer.

The PwDProfile represents the aggregation of the PwD preferences, his usual location history and settings,

and is used to tune the Carelink solution to each individual need and requirement. These include

GeoFencing, RegularLocation, RegularTrail, which are supported by the Location class, and the

AlertPreferences, PwDSensibilities and WearablePreferences, which tailor the device application to the

PwD needs.

The Device class represents the physical solution that will accompany the PwD, which is comprised of

different components and features, each represented in the Component and ComponentFeatures classes.

A Component type can be Communication (either Cellular, Wifi, Bluetooth or RF), GNSS or Sensor (either

an Accelerometer, ECG, EMG, GSR, HeartRate and/or Temperature sensors).

The EnergyProfile class represents the conditions and status of the device for the implementation of a

smart adaptable energy management service, that can enable or disabling each Component depending on

whether or not it is required.

 Document Title
D2.5

Public Deliverable 40 CARELINK

5 Supporting Infrastructure

5.1 Data Centre Overview

The TSSG house and operate their own Data Centre facility to support over 50 concurrently active ICT

research projects through the provisioning of Internet services, Cloud Computing resources, and project

bespoke testbeds (such as Unified Communications, SDN/NFV, Internet of Things, etc.) and research

equipment. The TSSG Data Centre also houses research infrastructure for other research groups and

centres, such as ICHEC’s Super Computer ‘Fionn’ and CONNECT’s Pervasive Nation Testbed.

Figure 24 Data Centre Interior

The TSSG Data Centre currently supports over 160 physical servers, providing more than 1,000 CPU cores

for processing and 400 virtual servers for cloud computing, including a selection of NVIDIA Tesla K20

GPUs for AI and Deep Learning. In addition, there is over ½ PB (that 512 TB) of Data Storage, and ~3,000

network ports. All of which provide a high-level of interconnectivity and flexibility for TSSG’s research

projects.

A large OpenStack cluster is hosted in this data centre, providing infrastructure-as-a-service capabilities.

All of this is available to the Carelink project. We are currently using the virtual servers to host the platform,

and leveraging the GPUs to train some of the Carelink algorithms.

 Document Title
D2.5

Public Deliverable 41 CARELINK

6 CONCLUSIONS

The Carelink solution, comprising software and hardware, has been carefully implemented with the clear

goal of providing a robust, energy-efficient means of tracking the location of a PwD, and alerting their

carer in the event of a wandering episode. The choice of devices and software tools, from the geospatial

database to the lightweight MQTT messaging has always been driven by this goal. As well as the whole

solution works together, crucially, it was designed with the tenets of composability and extensibility, so

that in all endeavours to bring this to market those components adding the most value in any potential

exploitation opportunity can be leveraged.

	1 INTRODUCTION
	2 ABBREVIATIONS AND ACRONYMS
	3 System Architecture
	3.1 Overview
	3.2 Hardware
	3.2.1 Energy Management Profiles

	3.3 Software
	3.3.2 Data Flow
	3.3.3 The Core Services
	3.3.3.1 Web Service
	3.3.3.2 User service
	3.3.3.3 Tracking Service
	3.3.3.4 Analysis Service
	3.3.3.4.1 Anomaly detection in GPS traces
	3.3.3.4.2 Route Prediction

	3.3.3.5 Alerting Service
	3.3.3.6 Proxy Service
	3.3.3.7 Logging Service
	3.3.3.8 Supporting Services

	3.4 Communications
	3.5 Privacy and Security

	4 Data and API Design
	4.1 Data Model

	5 Supporting Infrastructure
	6 CONCLUSIONS

