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Executive Summary 

Objectives 

The Solution Design document builds the basis for all research and development work of the project. It documents 

the system and software architecture to be used for this solution. Each component will be integrated into the 

overall system architecture.  

Results 
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1 INTRODUCTION 

 

This deliverable aims to present a description of the complete Carelink solution, describing the software and 

hardware components and the communication between them. There is also a detailed explanation of the route 

prediction research that was carried out.  
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2 ABBREVIATIONS AND ACRONYMS 

 

Abbreviation Description 

PWD Person with Dementia 

IoT Internet of Things 

LoRa Long Range Radio 

BLE Bluetooth Low Energy 

GNSS Global Navigation Satellite System 

LTE Long-Term Evolution 

GPRS General Packet Radio Services 

MQTT Message Queuing Telemetry Transport 

REST Representational State Transfer 

SMS Short Message Service 

UI User Interface 

JWT JSON Web Token 

AI Artificial Intelligence 

ML Machine Learning 

DL Deep Learning 
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3 System Architecture 

A key philosophy of this project is that the software, while obviously crucial, is simply the medium with 

which we realise the Carelink vision. The project is about delivering an innovative solution to the problem 

of location monitoring for dementia sufferers, not about simply delivering software. To this end we make 

use of open-source software where possible, saving development effort for the areas where real innovation 

can be realised.  

 

3.1 Overview 

3.2 Hardware 

The Carelink localisation solution is constrained by the needs of the targeted user group, which include 

elder people, in most cases with some degree of dementia. 

To fulfil those needs, it is necessary to maximize the following requirements: 

• Small Form Factor - to enable the integration and adaptation of the hardware to a desirable piece 

of clouting or personal wearable; 

• Extended Autonomy - to provide commodity and reasonable uptime for an extensive usage (from 

a week up to a month), using ultra low-power hardware; 

• Extended Range - resilient to movement and adaptable to changes in the topology of the 

surroundings; 

• High Availability - to ensure critical communications are always received, regardless of the 

conditions; 

 

One of the hardest trade-offs of a small form factor device is the limitation of the available energy capacity. 

In order to maximize the usage of the battery, a solution of adaptable energy profiles was envisioned. 

Each energy profile dynamically changes the actuation of the multiple components of the hardware 

(sensors, communication radios, localisation modules, etc), depending on the conditions of utilization of 

the device and the profile of the user (the type and safety of the current location, the time of the day, the 

remaining battery capacity, the available communication networks, and if it is accompanied by a carer). 

By maximizing the correlation of the external conditions to the appropriate usage of the components, it is 

possible to extend the autonomy of the device and at the same time increase the robustness and resilience 

of the tracking solution. 

 

To maintain a critical, high availability, localisation solution, it was required to use multiple technologies 

for both the communications and localisation techniques. 

For the communications, the use of emerging, low-power, IoT technologies such as Narrow-Band IoT (also 

known as LTE-NB), LoRa, Bluetooth Low Energy (BLE) and Wi-Fi, resulted in a distinct range of available 

networks, capable of coverage in different topology environments: urban, rural, outside, and indoor. 

Likewise, for the localisation, besides the Global Navigation Satellite System (GNSS) module (compatible 

with the GPS, GALILEO, and GLONASS constellations), a multilateration approach was also deployed with 
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the resource of the LoRa network, as well as the use of assisted location services (using available Wi-Fi 

Access Point's data). 

If the device loses coverage from a given technology in use, it is capable of independently falling-back to 

a better suited one, thus ensuring constant availability. 

 

Multiple external factors can influence the communications and localisation technologies (signals 

interference’s, noise, reflections, delays; different topology environments: urban, rural, outside, indoor; 

etc). 

Mitigation of (almost) all disruptive influences and behaviours of hardware operations required continuous 

testing in real conditions, and real-time iteration and maintenance of the hardware operations (such as 

implementing LoRa as a fall-back method for areas with poor NB-IoT and GPS coverage). Surpassing 

hardware and firmware limitations, and shortcomings of the devices (such as random failures), was only 

possible with the implementation of a self-recovery solution. In the end, it served to demonstrate the 

limitations of the Small Form Factor hardware and the future need for a custom designed solution. 

 

 

The hardware design went through several iterations and is described in detail in Deliverable D3.3 but a 

description of the second stage iteration will be provided here. This iteration of the prototype was based 

on board sizes of approximately 55mm x 22mm e.g. Pycom fipy and Sodaq Sara boards 

 

 

Figure 1 Prototype Boards 

 

The availability of the boards and respective supporting documentation, their size and footprint, 

technological capabilities and usability in user trials, were the determining factors for choosing the boards 

to be used in the field trials. Thus, the Pycom Fipy + Pytrack combo and the Sodaq Sara SFF R412M were 

the chosen boards. 

The Pycom combo was chosen due to the greater number of radio technologies, 6, that provide multiple 

fallback capabilities in case one technology fails. The Sodaq R412M was chosen for having the smallest 

size footprint, while also having one fallback communication option, from LTE to GPRS. 
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3.2.1 Energy Management Profiles 

To optimize the Carelink device's power autonomy, the configuration of each device's components 

(communication, tracking and sensors) is modified by the platform, using a set of Energy Profiles that 

adjust the modes of operation to the conditions of the PwD. 

Using the platform as a manager of the energy settings has three major benefits. First, it frees the devices 

from the processing required to determine the conditions to apply each profile, which by itself already 

saves a considerable amount of power. Secondly, it enables tweaking the components configurations 

remotely, in real-time, without the need to recall the devices to update the settings physically. Thirdly, it 

empowers the Carelink system with the possibility to adjust the Energy Profiles of a device to the respective 

PwD’s usage habits, by pre-emptively adapting the configurations to regular actions, creating a 

personalization of the system around the PwD needs. 

Depending on the conditions the PwD is in, there is a need for a higher or lower interval of time, of the 

status messages sent between the device and the platform, or from the data polled by the device’s sensors. 

These conditions can be the “Location” of the PwD, the “Time” of the day, if the PwD is “Accompanied” 

by a carer, and the overall “Wellbeing” of the PwD. 

Again, this implementation is described in detail in D3.3. 

 

 

3.3 Software 

Early on we decided we would follow a microservices approach. Microservices are small, autonomous 

services that work together. Many organisations have found that by embracing fine-grained, microservice 

architectures, they can deliver software faster and embrace newer technologies. More importantly, 

however, microservices give us significantly more freedom to react and make different decisions, allowing 

us to respond faster to the inevitable change that impacts all of us. (Newman, 2015)  

Common characteristics of a microservice architecture are 

• Componentisation via services – treat each service as a component that can be independently 

deployed 

• Organised around business capabilities – take a broad stack approach to the implementation 

of software, including UI, persistent storage etc. 

• Products not projects – rather than handing over a component for maintenance when complete, 

the team instead takes ownership of that component for its lifetime 

• Smart endpoints, dumb pipes – services own their own domain logic and should be as 

decoupled and cohesive as possible. Inter-service communication should be as simple as possible 

using simple REST services, or lightweight messaging 

• Decentralised governance – or use the right tool for the job e.g. .NET/react for the frontend, 

Python for machine learning etc. 

• Decentralised data management – services own their own data 
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• Infrastructure automation - closely tied to continuous delivery, microservices are simpler to 

rest and thus to deploy, since they are highly decoupled 

• Evolutionary design – facilitates rapid evolution of a system through the replaceable, or even 

transitory, nature of components. If the services are sufficiently granular and properly decoupled, 

only select services need to be upgraded/replaced. This is particularly appealing in the context of 

Carelink as we develop more sophisticated location tracking algorithms. 

 

 

 

In the context of a project like Carelink, the benefits of such an approach are numerous, the most notable 

being that  

1. Distributed teams can collaborate more effectively, without being bound by adherence to the same 

tools/technologies 

2. The project can adjust its trajectory more easily, as new data emerges from user trials, and market 

research 

 

Figure 2 shows the Carelink implementation of a microservices architecture with thirteen distinct services. 

Integration is obviously paramount when dealing with multiple services. Since communication between 

services can be both synchronous and asynchronous, we utilise two approaches 

• Messaging 

o Message Queuing Telemetry Transport (MQTT) as a messaging protocol 

• REST 

o Some services will need to communicate synchronously so transporting data as JSON via 

REST is the most sensible way to go 

 

When it comes to storing data, two approaches are used 

• An immutable data store for end-user data built on Postgres 

• Each microservice has the option of also using their own datastore where appropriate 

 

Each microservice is containerised using Docker, and these containers are orchestrated using Docker 

Compose. 

 

https://www.postgresql.org/
https://www.docker.com/
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Figure 2 High-Level Platform Architecture 

3.3.1 Messaging 

A requirement of the Carelink solution was a lightweight messaging protocol due to the fact that 

maximization of energy consumption can require reducing the load and processing power on the device, 

using the platform whenever possible. The proposed protocol, MQTT, satisfies these conditions and 

integrates easily with the platform.  

The MQTT specification is detailed in Appendix 2 in D3.3 

 

3.3.2 Data Flow 

The typical flow of data through the platform is straightforward 

• Location data from a Carelink device is transmitted from the device to the backend platform 

• This data is transmitted using the MQTT protocol 

• The Tracking service listens for data arriving via MQTT and when this occurs it analyses the location 

data to see if an alert is necessary 

• If an alert is warranted the Tracking Service publishes a message to the Alerts topic in MQTT, 

which is picked up by the Notification service 

• The Alerting service then triggers an SMS notification to the carer of the PwD  
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3.3.3 The Core Services 

3.3.3.1 Web Service 

The user interface will be provided by the web service. The primary UI will be a responsive web application, 

permitting use from a browser, but also useable from devices.  

The web service, i.e. the front-end, is described in detail in D3.2 so there is no need to duplicate the 

description here, although we will include the technology listing so all technologies for the platform can 

be found in this one document. The important point in the context of the broader platform is the frontend 

is treated like all the other Carelink microservices, i.e. a self-contained software component that can be 

developed and deployed independently.  

 

The GUI Interface is built with the following modern technologies: 

• HTML5 and CSS3 

• Twitter Bootstrap 4 as CSS Framework 

• Javscript ES6, ReactJS with Redux 

• .NET Core for routing and hosting purposes 

• SASS 

• Webpack for JavaScript code compile automation 

 

Every time the GUI retrieves/sends information it needs to connect to the API by sending JWT token 

stored in browser’s location storage after successful login process. The UI app is built with HTML, CSS and 

JavaScript. It uses responsive patterns so that it is a mobile friendly application. 

 

3.3.3.2 User service 

The User service exposes an API to facilitate the following 

• User registration 

• User authentication/authorisation (via JSON Web Tokens as described in section Error! Reference 

source not found.) 

• Retrieve/update carer details 

• Retrieve/update PwD details 

• Retrieve/update Location details 

• Retrieve/update Device details 

• Retrieve/update Alert details 

• Retrieve/update Zone details 

• Retrieve/update Route details 

• Retrieve/update Energy Profiles  
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The API is documented using Swagger following the OpenAPI Specification (OAS) v3. The OpenAPI 

Specification (OAS) defines a standard, language-agnostic interface to RESTful APIs which allows both 

humans and computers to discover and understand the capabilities of the service without access to source 

code, documentation, or through network traffic inspection.1 

 

Figure 3 shows a screenshot of the online swagger documentation (only some of the API endpoints are 

visible).  

 

Figure 3 User Service Swagger Documentation 

 

1 https://swagger.io/specification/ 
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3.3.3.3 Tracking Service 

As described in Section Error! Reference source not found. the Tracking Service listens for messages 

on particular MQTT topics, and when location data is being transmitted to the platform, it is analysed to 

detect if that PwD is wandering.  

 

The most fundamental level of analysis focuses solely on whether or not a PwD that is mobile is within a 

boundary that has been defined to represent a safe zone. This zone(s) is created by the carer and/or the 

PwD using the web frontend and essentially says “once the PwD is moving in this zone everything can be 

considered fine, but if they leave this zone an alert must be sent”.  

 

Take the example shown in Figure 2 where the four blue markers represent the boundary of a safe zone. 

The red marker, representing the location of the PwD, is outside of the zone and so in this instance an 

alert would have been triggered. This example is simplified just to visualise the concept, such a small safe 

zone would clearly be draconian in terms of how restrictive it is.  

 

 

 

 

Figure 4 PwD Outside Safe Zone 

 

What at first seems a very easy problem to address, actually has some technical nuances. It is a problem 

known as the Point-in-Polygon problem, and before the location points can be used, they must first be 

transformed from the GPS coordinate system (3D) to a cartesian coordinate system (2D). This use of 

specific geographical projections is vital to ensure accurate analysis. To achieve this we make use of the 

Python package, Shapely.2 A snippet of this code is shown in Figure 5 showing how Shapely allows us to 

perform both the coordinate transformation, as well as the point-in-polygon detection.  

 

 

2 https://pypi.org/project/Shapely/ 
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Figure 5 Python Point-in-Polygon Code 

 

3.3.3.4 Analysis Service 

There are several different types of analysis that we planned to use to best manage wandering behaviour. 

The failsafe level i.e. safe-zone detection is implemented by the Tracking Service as described in Section 

3.3.3.3. 

 

3.3.3.4.1 Anomaly detection in GPS traces 

Figure 6 shows a representation of some of the navigation patterns that have been observed during a 

wandering event (Martino-Saltzman, Blasch, Morris, & McNeal, 1991).  

 

 

Figure 6 Hallmark Patterns of Wandering 

 

We began developing algorithms to classify the three main wandering patterns i.e. Pacing, Random, and 

Lapping. The first pattern we decided to address was Pacing, i.e. repeating back and forth along a route. 

We took inspiration from (Xiang, Li, & Zhou, 2011) in which the authors used the concept of Entropy to 

detect distributed denial of service (DDoS) attacks. They calculate entropy using Equation 1.  

 

 

Equation 1 Generalised Information Entropy 
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Essentially what this gives is a figure representing the level of unique information in a dataset. In an 

extremely simplified example comparing two datasets D1, and D2, where D1 = [1, 2, 3, 4, 5] and D2 = 

[1, 1, 1, 1, 1] the entropy score for D1 would be higher because there is more information represented in 

the set, rather than repeating values in D2. It calculates the probability of points occurring in a dataset. 

Those occurring more frequently have less salience.  

We realised that by applying this concept to the analysis of GPS data, if the PwD began pacing, then as 

the GPS points repeat the entropy score should drop.  

 

 

We tested this against the Microsoft Geolife GPS Trajectory Dataset3. Figure 7 shows a sample trace from 

this dataset. A heatmap is used to highlight repeating points i.e. as the colour of the trace goes from green 

to red this indicates that the route is being repeated. So, the pacing section of the route is the red part.  

 

 

Figure 7 Heatmap showing repeating points as increase in colour intensity 

 

Figure 8 shows the result of our pacing detection algorithm. For each new GPS point reported, the 

algorithm calculates the entropy score (represented by the blue line in the figure). As soon as the pacing 

begins the entropy drops and continues to drop until the pacing stops. This pacing correlates to the 

highlighted region in the figure.  

 

3 https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/ 
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Figure 8 Entropy Calculation for GPS Trace 

What this means is that if a PwD begins pacing while walking the algorithm can detect this in real-time 

and alert if appropriate. Having brought the pacing detection to this stage our plan was to test it further 

and then develop complementary algorithms to detect both Random and Lapping patterns. At this stage, 

however, we were also considering the problem of route prediction i.e. rather than just classifying the 

behaviour of the PwD while they are walking, can we predict their likely destination. Discussing this with 

the Carelink reviewers there was broad agreement that although this would be a very challenging problem, 

it had great potential. We then made the decision to direct our focus here rather than continuing the 

behaviour classification. 

 

3.3.3.4.2 Route Prediction 

In the TSSG we had previously applied Deep Learning to sequence prediction for forecasting problems.  

It was our belief that a similar DL approach could be very effective in this regard. The thinking was that if 

the system could learn the common routes they take, it should quickly be able to classify if they are on a 

route leading to a common destination. If this is not the case, then it is implied that they are not going 

towards a known destination and so may be wandering. There are obviously many questions to try and 

address with such a problem but having discussed with the reviewers the potential merit in taking on this 

challenge we decided to factor it in to our work.  

This ML-based sub-system aims to classify the normal routes a PwD usually takes from the routes that 

they might take when they get lost during a wandering episode. Eventually, predicting the destination a 

patient is heading to, as early as possible, based on the real-time changes of their location.  

 

  

 

The Route Prediction System architecture consists of 5 modules, as shown in Figure 9 
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Figure 9 Route Prediction Architecture 
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Data Generator 

Even with the trials that were planned pre-covid we believed we could not record enough real data to 

experiment with an AI algorithm such as this. So, we decided to generate realistic, synthetic data to test 

our hypothesis, and the hope was then to capture as much real data as possible during the trials and 

asses how the algorithm would perform.  

This module provides the functionality to generate the highly customisable dataset of simulated routes 

and destinations taken by a person. A user can specify the number of main routes, the number of sub-

routes and the number of destinations, in addition to the radius of the zone those routes should be in.  

The code in Figure 10 shows a simple example of how to generate 6 routes and 6 destinations within a 

zone of radius 50m (obviously not realistic, just for the purpose of illustration). Figure 11 shows the result 

of running this.  

 

 

Figure 10 Data Generation Code 

 

 

Figure 11 Sample Routes 
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Data Pre-processor 

This module applies the required pre-processing on the Routes Dataset, namely 

1. Padding: pads the sequence of routes with zeros to make them all of same length. 

2. Features Scaling: since routes are dynamic and vary in their length and coordinates, sequence 

scaling might be necessary to bring high numbers within a consistent numeric range. Available 

scaling’s are normalization, standardization, robust scaling, maximum absolute value scaling. 

3. Label Encoding: encodes labels with value between 0 and n_classes-1 in order to convert non-

numeric values to numeric ones. 

4. OneHot Encoding: encodes categorical integer features as a one-hot numeric array to suit for 

the categorical cross-entropy loss function. 

5. Dataset Splitting: split arrays or matrices into random train and test subsets.  

 

ML Model 

This module defines the logic of the model and builds it. As well as facilitating the following functions: 

1. Train: trains the model fully on a given dataset and evaluates on a ratio of observations taken 

from the end of the data as a cross-validation split. 

2. Partial Train: partially trains the model on a given dataset where routes are obtained separately 

(i.e. online training). 

3. Predict: predicts the class probability of given route sequence and returns it as a vector. 

4. Reconstruct: reconstructs the model architecture in case a new destination is added or an existing 

one removed. It transfers parts of the original trained model to the new model. 

 

Performance Analysis 

This module provides the most important dynamic evaluation tools for multi-class routes classification, 

namely: 

1. Plot Training History: plots the training history e.g. training accuracy, training loss, validation 

accuracy, validation loss. 

2. Plot ROC Curve and AUC Scores: compares the sensitivity vs specificity i.e. compares the true 

positive rate and false positive rate.  

3. Plot Confusion Matrix: Summarizes the performance of the model for a better idea of what the 

model is getting right and what types of errors it is making. 

4. Create Classification Report: builds a text report showing the main classification metrics e.g. 

accuracy, precision, recall, F1-Score, support, macro average, and weighted average. 

 

Routes Utilities 

A utilities module providing a variety of helper functions including GridSearchCV and Early Stopping 

Callback 
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1. GridSearchCV: performs exhaustive search over specified parameter values for the routes model 

on one, very few, or a complete set of routes. It returns a dictionary of the best model and its 

information along with best parameters (based on the overall average performance). 

2. EarlyStopping: a callback that terminates training when one or all metrics reach the specified 

baseline(s). It is very useful to avoid overfitting and underfitting, as well as terminating training 

once the model has learned enough. So, no more redundant training epochs or divergence after 

convergence.  
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Model Logic and Architecture 

Figure 12 Model Architecture shows the overall model architecture and its logic. The convolution layer 

here is used for extracting local sub-sequences from the route main sequence and to identify local patterns 

within the window of convolution i.e. augmenting sequence with its subsequence’s based on the number 

of filters specified. 

 

 

Figure 12 Model Architecture 
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Stacking LSTM hidden layers makes the model deeper, more accurately earning the description as a deep 

learning technique. Since each LSTM is defined mainly by its number of units, which specifies the capacity 

of the LSTM memory, the number of units plays a critical role in LSTM learning quality. If the number of 

units is too large, convergence will be faster, but it will be prone to overfitting. On the other hand, if the 

number of units is too small, it takes longer to converge and will be prone to underfitting. Therefore, we 

build 3 LSTMs with 3 different memory capacities so each one can learn differently and cope with the 

different sequence lengths.  

The first LSTM has lesser memory capacity, so it can perform well on small sub-sequences. However, it is 

bi-directional so it can see the past and the future of the sequence steps context in the route for better 

classification. The second LSTM has bigger memory and the third has the biggest among them all so it 

can remember long routes. 

Next we have a Global Average Pool (GAP) to summarize the cumulative contribution effects of the entire 

sequence so it allows to have sequences of any length, it does that by taking an average of every incoming 

feature map. This GAP acts as a structural regularizer, which natively prevents overfitting for the overall 

structure.  

Finally, there is the Activation Layer which is responsible for transforming the summed weighted input 

from previous layer into an output (i.e. prediction). If the number of destinations is 1, a sigmoid and a 

binary cross-entropy are selected automatically as an activation function and loss function respectively. 

Whereas if the number of destinations is greater than 1 (as would be expected), a softmax and a 

categorical cross-entropy are selected.  
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Experiments 

Since the trials were greatly restricted due to the Covid-19 pandemic the route prediction had to be tested 

using synthetic datasets as described previously. Even though this was far from ideal we did strive to test 

using very challenging datasets where the routes highly overlap as illustrated in Figure 13. There are 30 

destinations and 70 main routes which extremely overlap.  

 

 

Figure 13 Challenging Routes Dataset 
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30 sub-sequences were created, where each sequence length is only 50% of its corresponding main route, 

for validating the system. In order to search for the best model, we searched through the following 

parameter grid 

 

Figure 14 Parameter Grid 

 

After running the GridSearchCV on the above parameters grid using an early stopping configuration, the 

following best set of parameters were found (non-important parameters omitted) 

• units: 50 

• optimizer: Nadam 

• n_filters: 64 

• kernel_size: 10 

• recurrent_dropout: 0.0 

 

The reason we performed a GridSearchCV is because the best optimizer, LSTM memory capacity, and 

number of filters in CNN etc. differ in different scenarios and on different datasets. Although the above 

parameters were the best in this situation (e.g. the best optimizer found to be Nadam), repeating the 

experiment on different datasets might well yield quite different results because there is no one solution 

to every situation.  
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Below are included some of the results of running this experiment. 

 

 

Figure 15 Training History 
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Figure 16 Confusion Matrix 
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Figure 17 ROC AUC Plot 
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Dynamic Predictions 

An important feature of such an algorithm is its ability to quickly determine the likely destination a user 

is going towards. To test this, we picked arbitrary routes and attempted to predict the sub-sequences 

along the way, starting from the original point towards the destination with 2 steps taken before the 

next prediction. Essentially, we are simulating a PwD moving towards some destination (destination ‘A’ 

in the example below) and checking in real-time how early the AI model can guess the correct 

destination as the patient moves, taking into consideration the complexity of the model and the 

overlapping of routes.  

 

Figure 18 Dynamic Predictions 



 Document Title 
D2.5 

 
 

 

Public Deliverable 33 CARELINK 

 

As shown in the preceding example the dynamic prediction works very well. The model could predict the 

correct destination (‘A’) after only 7 steps4, 29% of the overall route distance. 

 

3.3.3.5 Alerting Service 

The Alerting Service is quite straightforward. It listens to the ‘alerts’ topic on MQTT and sends an alert if 

requested. We investigated several different techniques for notifications from SMS, to Web Push 

notifications, to native app notifications. We believe that the most useful (in terms of impact, urgency, 

and adoption) are SMS notifications. We trialled both Amazon Simple Notification Service 

(https://aws.amazon.com/sns/) and Twilio (https://www.twilio.com/). For ease of use we proceeded with 

Twilio, which means that with just a few lines of code we can send texts. The SMS sent by Twilio includes 

a link that brings the carer directly to a map highlighting the location of the PW. 

 

 

Figure 19 Twilio Dashboard 

 

 

 

4 ‘steps’ represent coordinate updates of a route, not physical steps taken 

https://aws.amazon.com/sns/
https://www.twilio.com/
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Figure 20 SMS Alert Template 

 

3.3.3.6 Proxy Service 

We began by using Nginx as a proxy service that acts as a reverse proxy to any of the other microservice 

APIs. We then switched to Traefik which is a leading modern reverse proxy and load balancer that makes 

deploying microservices easy. Traefik intercepts and routes every incoming request to the corresponding 

backend services. In terms of security benefits its supports SSL termination and we use it with Let’s Encrypt 

for automatic certificate generation. 
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3.3.3.7 Logging Service 

An important cross cutting concern for any system is logging. We had originally looked at implementing 

the Riemann monitoring framework as discussed in D4.2, but on further consideration we decided it was 

better to consider logging and monitoring as two distinct services. Sentry was used as a monitoring 

platform and for logging we opted for Graylog. This seamlessly collects, enhances, stores, and analyses 

log data from the various Carelink services. It is particularly useful as a debugging aid for device/platform 

communications.  

 

 

Figure 21 Graylog Dashboard 
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3.3.3.8 Supporting Services 

In addition to the services described in the previous sections there were a number of additional services. 

These used the official Docker images and so are just listed here for completeness. 

• Eclipse Mosquitto as the MQTT broker 

• Swagger UI to host the API documentation 

• Postgres as the database, with the PostGIS spatial database extender 

• Redis as a cache 

• Node-RED to enable communication using LoRa as well as using wifi geo-location services to assist 

with tracking. It will be used in the backend to do data processing of the packets received by The 

Things Network (TTN). The devices will communicate through LoRa with a gateway. This gateway 

will forward the packets to TTN, which will then communicate by MQTT to Node-RED, which in 

turn will communicate by MQTT with the Carelink platform. Node-RED is also used to process the 

‘status’ messages (that are published in the MQTT broker, with a field containing the Wi-Fi access 

points that are near the device), which will make use of 3 Wi-Fi location API’s to determine an 

“assisted” location, complementary to the GPS. This will enable the Pycom devices to have one 

more alternative to the GPS, in case of failure. 
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3.4 Communications 

3.5 Privacy and Security 

Main points regarding privacy are detailed in D2.3. All communication between the web service and the 

platform is done over encrypted, authenticated, and authorised channels.  

The decoupled nature of the services described in the previous section bring many benefits, but they also 

introduce complexity chief among which is how to secure the services without introducing dependencies 

and breaking the decoupling.  

The first line of security is SSL. All traffic to/from the Carelink application will be encrypted – no information 

between the application and client should be sent in the clear. This mitigates against man in the middle 

attacks and prevents sensitive information from being sniffed.  

Access to the Carelink platform will be further restricted to authorised users. Users will have to authenticate 

themselves to the system in a Single Sign On (SSO) mechanism which will require that the user be 

registered (this happens through the User Service API).  

Upon successful authentication, a user session is created which will be maintained until such time as they 

sign out, or the session expires. The session will maintain a user context which will be attached to every 

request from the client.  Carelink will use JSON Web Tokens (JWT) as specified in RFC7519 to secure inter 

service requests and provided the user context to services. The token will encrypt and sign the user 

context using an RSA key pair. On receipt, a service can validate the source of the request via the public 

key and thus have access to the context. Furthermore, the token can be passed on verbatim to any 

secondary service that needs to be called to complete the request. These tokens will have a limited lifetime, 

which will mitigate against misuse.  

 

Figure 22 JWT Example 
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4 Data and API Design 

 

4.1 Data Model 

The Carelink Ontology model represents the conditions, rules and assertions, required for the 

interoperability, configuration and management of the user’s, hardware feature’s and device’s profiles. 

Depicted in Figure 23, is a simplified diagram of the ontology model, where the classes are represented 

in yellow, their respective datatype properties are represented in green, and the object properties are 

represented in blue, which characterize the relationships and rules of the classes. The cardinality of each 

relation, either of the datatype or object properties, is represented as mathematical inequalities over the 

arrows. 

 

 

Figure 23 Carelink Ontology Model Diagram 
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There are seven proposed primary classes, namely User, EnergyProfile, Location, Device, PwDProfile, 

Component and ComponentFeatures. 

The User class represents the identification of the target audience of the Carelink system, i.e. the PwD 

and the Carer. 

The PwDProfile represents the aggregation of the PwD preferences, his usual location history and settings, 

and is used to tune the Carelink solution to each individual need and requirement. These include 

GeoFencing, RegularLocation, RegularTrail, which are supported by the Location class, and the 

AlertPreferences, PwDSensibilities and WearablePreferences, which tailor the device application to the 

PwD needs. 

The Device class represents the physical solution that will accompany the PwD, which is comprised of 

different components and features, each represented in the Component and ComponentFeatures classes. 

A Component type can be Communication (either Cellular, Wifi, Bluetooth or RF), GNSS or Sensor (either 

an Accelerometer, ECG, EMG, GSR, HeartRate and/or Temperature sensors). 

The EnergyProfile class represents the conditions and status of the device for the implementation of a 

smart adaptable energy management service, that can enable or disabling each Component depending on 

whether or not it is required. 

 



 Document Title 
D2.5 

 
 

 

Public Deliverable 40 CARELINK 

 

5 Supporting Infrastructure 

5.1 Data Centre Overview 

The TSSG house and operate their own Data Centre facility to support over 50 concurrently active ICT 

research projects through the provisioning of Internet services, Cloud Computing resources, and project 

bespoke testbeds (such as Unified Communications, SDN/NFV, Internet of Things, etc.) and research 

equipment.  The TSSG Data Centre also houses research infrastructure for other research groups and 

centres, such as ICHEC’s Super Computer ‘Fionn’ and CONNECT’s Pervasive Nation Testbed.  

 

 

 

Figure 24 Data Centre Interior 

 

The TSSG Data Centre currently supports over 160 physical servers, providing more than 1,000 CPU cores 

for processing and 400 virtual servers for cloud computing, including a selection of NVIDIA Tesla K20 

GPUs for AI and Deep Learning. In addition, there is over ½ PB (that 512 TB) of Data Storage, and ~3,000 

network ports. All of which provide a high-level of interconnectivity and flexibility for TSSG’s research 

projects. 

 

A large OpenStack cluster is hosted in this data centre, providing infrastructure-as-a-service capabilities. 

All of this is available to the Carelink project. We are currently using the virtual servers to host the platform, 

and leveraging the GPUs to train some of the Carelink algorithms. 
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6 CONCLUSIONS 

The Carelink solution, comprising software and hardware, has been carefully implemented with the clear 

goal of providing a robust, energy-efficient means of tracking the location of a PwD, and alerting their 

carer in the event of a wandering episode. The choice of devices and software tools, from the geospatial 

database to the lightweight MQTT messaging has always been driven by this goal. As well as the whole 

solution works together, crucially, it was designed with the tenets of composability and extensibility, so 

that in all endeavours to bring this to market those components adding the most value in any potential 

exploitation opportunity can be leveraged. 
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