
This project AgeWell has received funding from the
AAL Joint Pgoramme under grant agreement No aal-2018-5-92-CP.

Virtual coaching to support a healthy and meaningful life of older adults and
employees in their retirement process

Call: AAL-JP call 2018

Grant Agreement Number: aal-2018-5-92-CP

Deliverable

D3.6 AgeWell API Manual

Deliverable type: Report

WP number and title: WP3: Technical Development

Dissemination level: Confidential

Due date: Month 20 – 30 November 2020

Lead beneficiary: AIT

Lead author(s): Johannes Kropf (AIT), Elena Rostovtseva (Med)

Reviewers: Niklas Hungerländer (AIT)

aal-2018-5-92-CP 2 D3.6

Document history
Version Date Author/Editor Description

0.1 13.09.2020 Johannes Kropf Initial version

0.2 18.10.2020 Elena Rostovtseva Input Medrecord

0.3 20.10.2020 Cornelia Schneider Input FHWN

1.0 25.10.2020 Johannes Kropf Final version

aal-2018-5-92-CP 3 D3.6

Table of Contents

1 Executive Summary 4

2 Introduction 5

3 MQTT broker 5

Publish/Subscribe 5

Topics/Subscriptions 6

Quality of Service 7

Retained Messages 7

4 The MEDrecord API 9

5 Conclusions 11

This deliverable contains original unpublished work or work to which the author holds all rights
except where clearly indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation, quotation or both.

aal-2018-5-92-CP 4 D3.6

1 EXECUTIVE SUMMARY

AgeWell is a distributed system with components from 3 technical partners. Hence, it is not a
monolithic solution which can be used by third parties out of the box. Nevertheless, third party
developers are able to extend the functionalities in different ways. The core component from
the end-user’s perspective is the AgeWell Android app, hence, new functionalities or features
are dedicated to this component. The App communicates with the backed services via a
centralized messaging system (MQTT), hence there is no API (e.g. REST interface), but a
messaging protocol is defined and documented in D3.5.

The MedRecord care plan backend is not connected via MQTT, but via an API over the ProSelf
backend server. In this document, mainly this API is described.

aal-2018-5-92-CP 5 D3.6

2 INTRODUCTION
The components of the AgeWell system are connected via the MQTT protocol, which is a
centralized message queuing instance. Only the existing MedRecord platform and third
party applications like Google Dialog Flow or Firebase Messaging are connected via
RESTful APIs. In xxx an overview is given how the AgeWell components interact with each
other. In the following sections of the documents, the MQTT Broker and the Medrecord API
is described.

3 MQTT BROKER
In the AgeWell project, the Mosquitto MQTT Broker with version 1.6.9 is used
(https://mosquitto.org/). For connecting to the broker, certain client libraries are used. For Java,
as used by AIT and ProSelf), the Eclipse Paho MQTT client library is used
(https://www.eclipse.org/paho/).

MQTT is a light weight publish/subscribe messaging protocol, originally created by IBM and
Arcom (later to become part of Eurotech) around 1998. MQTT is an OASIS standard. The
latest version is 5.0 and is available in a variety of formats. MQTT 3.1.1 is also an ISO standard
(ISO/IEC 20922).

PUBLISH/SUBSCRIBE

https://mosquitto.org/
https://mosquitto.org/
https://www.eclipse.org/paho/
https://www.oasis-open.org/
https://www.oasis-open.org/
https://www.oasis-open.org/standards#mqtt-v5.0-os
https://www.oasis-open.org/standards#mqtt-v5.0-os
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466
http://www.iso.org/iso/catalogue_detail.htm?csnumber=69466

aal-2018-5-92-CP 6 D3.6

The MQTT protocol is based on the principle of publishing messages and subscribing to topics,
or "pub/sub". Multiple clients connect to a broker and subscribe to topics that they are
interested in. Clients also connect to the broker and publish messages to topics. Many clients
may subscribe to the same topics and do with the information as they please. The broker and
MQTT act as a simple, common interface for everything to connect to.

TOPICS/SUBSCRIPTIONS

Messages in MQTT are published on topics. There is no need to configure a topic, publishing
on it is enough. Topics are treated as a hierarchy, using a slash (/) as a separator. This allows
sensible arrangement of common themes to be created, much in the same way as a filesystem.
For example, multiple computers may all publish their hard drive temperature information on
the following topic, with their own computer and hard drive name being replaced as
appropriate:

● sensors/COMPUTER_NAME/temperature/HARDDRIVE_NAME

Clients can receive messages by creating subscriptions. A subscription may be to an explicit
topic, in which case only messages to that topic will be received, or it may include
wildcards. Two wildcards are available, + or #.

+ can be used as a wildcard for a single level of hierarchy. It could be used with the topic above
to get information on all computers and hard drives as follows:

● sensors/+/temperature/+

As another example, for a topic of "a/b/c/d", the following example subscriptions will
match:

○ a/b/c/d
○ +/b/c/d
○ a/+/c/d
○ a/+/+/d
○ +/+/+/+

The following subscriptions will not match:

○ a/b/c
○ b/+/c/d
○ +/+/+

can be used as a wildcard for all remaining levels of hierarchy. This means that it must be
the final character in a subscription. With a topic of "a/b/c/d", the following example
subscriptions will match:

○ a/b/c/d
○ #
○ a/#

aal-2018-5-92-CP 7 D3.6

○ a/b/#
○ a/b/c/#
○ +/b/c/#

Zero length topic levels are valid, which can lead to some slightly non-obvious behaviour. For
example, a topic of "a//topic" would correctly match against a subscription of "a/+/topic".
Likewise, zero length topic levels can exist at both the beginning and the end of a topic string,
so "/a/topic" would match against a subscription of "+/a/topic", "#" or "/#", and a topic "a/topic/"
would match against a subscription of "a/topic/+" or "a/topic/#".

QUALITY OF SERVICE

MQTT defines three levels of Quality of Service (QoS). The QoS defines how hard the
broker/client will try to ensure that a message is received. Messages may be sent at any QoS
level, and clients may attempt to subscribe to topics at any QoS level. This means that the
client chooses the maximum QoS it will receive. For example, if a message is published at
QoS 2 and a client is subscribed with QoS 0, the message will be delivered to that client with
QoS 0. If a second client is also subscribed to the same topic, but with QoS 2, then it will
receive the same message but with QoS 2. For a second example, if a client is subscribed with
QoS 2 and a message is published on QoS 0, the client will receive it on QoS 0.

Higher levels of QoS are more reliable, but involve higher latency and have higher bandwidth
requirements.

● 0: The broker/client will deliver the message once, with no confirmation.
● 1: The broker/client will deliver the message at least once, with confirmation required.
● 2: The broker/client will deliver the message exactly once by using a four step

handshake.

RETAINED MESSAGES

All messages may be set to be retained. This means that the broker will keep the message
even after sending it to all current subscribers. If a new subscription is made that matches the
topic of the retained message, then the message will be sent to the client. This is useful as a
"last known good" mechanism. If a topic is only updated infrequently, then without a retained
message, a newly subscribed client may have to wait a long time to receive an update. With a
retained message, the client will receive an instant update.

Structure of AgeWell MQTT messages

In general, MQTT messages are structured in the JSON format. In AgeWell, all messages
follow a common structure with mandatory fields as shown below:

{

"topic": "eu/agewell/event/reasoner/<TOPIC>/<SUBTOPIC>",

aal-2018-5-92-CP 8 D3.6

"properties": {

 "LANGUAGE_CODE": "<LANGUAGE CODE>",

 "SOURCE_ID": "<PACKAGE NAME>",

 "DIMENSION_ID": <DIMENSION ID>,

 "CLIENT_ID": "<CLIENT ID>",

 "TIMESTAMP": <TIMESTAMP>

 }

}

The <SUBTOPIC> indicates if a messages is intended to be sent to or sent by the user
interface. By convention, for messages sent from the GUI to a backend service, the subtopic
REQUEST is used, for responses on a request sent back the GUI RESPONSE is used and for
messages, which are sent without a request from the GUI (or the user), the subtopic
MESSAGE is used.

The other mandatory fiels are:

LANGUAGE_CODE: the two digit language code the content es provided (e.g. en for Englisch,
it for Italian, de for German and nl for Dutch.

SOURCE_ID: An id indicating the source of the message. By convention, the package name
is used. e.g. at.ac.ait.hbs.agewell.demo.server.package.

DIMENSION_ID: The targeted dimension. By convention, 1...physical activities, 2...mental
health, 3...social activities, 4...health literacy, 5….for retirement. The dimension id corresponds
to the sections of the App dashboard.

CLIENT_ID: This is a unique id of the MQTT client, e.g. a UUID

TIMESTAMP: The timestamp the message has been generated in milliseconds since 1.1.1970
(Unix Epoche time).

The remaining part of the JSON message is specific to the topic. The full list of topics and its
properties is described in detail in Deliverable 3.5.

aal-2018-5-92-CP 9 D3.6

4 THE MEDRECORD API
The MEDrecord platform is completely based on a microservice architecture, we offer them as
separate services. For clinical or healthcare related data we are offering two microservices that
query exactly the same backend, so the result will be the same:

1. Data exchange service: simplified clinical REST based API
2. Interceptor service: FHIR API, these are the more complex FHIR queries that you

can certainly use.

Here you can find technical information on how the MEDrecord API works:
https://sites.google.com/medrecord.io/helpcenter/home?authuser=1

Most of the information can be found inside the Admin panel https://admin-
agewell.medvision360.org/

In order to become admin and access the MEDrecord APIs please:

● Create an account on the patient portal
● Ping Jan-Marc/Edin that you did and you have access
● We will make you admin (manually)
● Only after that you are able to login at the admin panel.

Please note that you have to choose first if you would like to use the REST based API's
inside the admin panel, or use our FHIR based interceptor service.

For the API we have created a GUI for the easy management of all data which can be
accessed at the admin panel. For each that is shown inside the GUI there is also an API
endpoint.

https://sites.google.com/medrecord.io/helpcenter/home?authuser=1
https://sites.google.com/medrecord.io/helpcenter/home?authuser=1
https://admin-agewell.medvision360.org/
https://admin-agewell.medvision360.org/
https://agewell.medvision360.org/login
https://admin-agewell.medvision360.org/
https://admin-agewell.medvision360.org/
http://agewell-fhir-interceptor.medvision360.org/
https://admin-agewell.medvision360.org/

aal-2018-5-92-CP 10 D3.6

Swagger API screen

For our whole API, we provide a Swagger approach of describing RESTful APIs. It serves a
great purpose in the Admin Panel visualizing all the endpoints.

aal-2018-5-92-CP 11 D3.6

5 CONCLUSIONS
The AgeWell solution is developed as a modular and expandable solution. By using the MQTT
protocol, every component can be extended or replaced by another one and the connection
layer of each component does not deeply affect the services behind (encapsulation paradigm).
For example, it is possible to use alternative UIs instead of the AgeWell app. One could, e.g.
implement an interface to Amazon’s Alexa as the main UI without the need of changing the
other components. In a similar way, the GUI could be placed on the robot for future use.

	1 Executive Summary
	2 Introduction
	3 MQTT broker
	Publish/Subscribe
	Topics/Subscriptions
	Quality of Service
	Retained Messages

	4 The MEDrecord API
	5 Conclusions

