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Executive Summary 

The IANVS system aims to provide elderly people with a platform based on IoT (Internet of 

Things) 3/*ults in a better utilization of the professional care services. 

This is achieved by locating elderly people in their living environment in real time by means of 

the exchange of radio signals between a portable device and the infrastructure installed in the 

home. In the same way, both involved nursing staff and home help services are located and 

registered too. This improves the health, comfort and wellbeing of older people, giving them 

security and peace of mind even when their personal needs grow with them. At the same time, 

the nursing staff and domestic helpers become more efficient as they are greatly relieved in 

the planning and administrative implementation. This reduces costs and leaves more time for 

the person being cared for. 

Besides indoor localization, the IoT 3D sensor technology system will also allow to pervasively 

monitor the elderly movements and to detect a fall at the moment it happens. The elderly 
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movements will be analysed by means of an accelerometer sensor that is integrated in the IoT 

3D sensor and is carried by the person in the belt.  

A laboratory validation of an accelerometer-based fall detection algorithm is an essential part 

of the development phase. This lab validation will include knowledge of the daily routines of 

the elderly which ultimately must not be recognised by the IANVS system as falls. The 

validation will also include the knowledge of the movements that should be recognised as falls, 

which will be simulated in mattress by young volunteers. To this end, the Fraunhofer has 

defined a simulation protocol for acquiring of accelerometer data from simulated falls and non 

falls. The data collected in laboratory conditions will allow to train machine learning algorithms 

able to discriminate between movements of a fall from a movement of a non-fall event, based 

on a stream of accelerometer data. The data collection process, the methodology used, and 

the results achieved are described in detail in the following sections. 

 

Introduction 
Fall detection systems have been a trend research topic over the past years, motivated by the 

damaging impact of fall events in the quality of life, especially of the elder, and the importance 

of prompt assistance to minimize their consequences. Among the variety of available 

solutions, wearable-based systems, relying on ubiquitous equipment (e.g. smartphone, 

smartwatch, fitness trackers) to enable pervasive monitoring of users’ motion parameters, are 

some of the most common. As such, there is a tendency to generate multiple fall detection 

solutions adapted to each different use case and shaped by each system’s hardware 

limitations. This leads to an overflow of custom-made systems built upon similar 

methodologies but fine-tuned to particular objectives, constraints or even target populations. 

Common examples of specific requirements and constrains are related to the wearable 

design, such as the place of usage, the way it can be attached to the body; the device’s 

processing capability, memory and battery; or limitations in the accelerometer sampling rate. 

Fall detection systems’ fine-tuning implies the collection of a significant amount of data 

examples, in conditions as similar as possible to those of the intended use, to train and test a 

new fall detection model. Hardware specifications may also influence the choice of the 

modelling approach and adaptations in the implementation of the model may be required. In 

summary, adjusting multiple fall detection solutions is a time and effort consuming process. 

  

In this work, we introduce a new machine learning pipeline, trained with data from a 

comprehensive proprietary dataset, to model and deploy custom-made fall detection 

algorithms, based on which we shall: 

 

1. Study the cases in which customization is indeed necessary 

• Model complexity: Do models of higher complexity outperform models of more modest 

complexity at detecting falls? 

 

• Sensor position generalization: Do models that were not trained with data from sensors 

placed on a certain body position maintain their performance when evaluated with 

these data? 

 

• Single vs. multiple training positions: Do models solely trained with data from sensors 

placed on a certain body position A perform better than models trained with data 
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acquired at multiple positions when evaluated with data from A? 

 

• Sampling rate: Does the accelerometer sampling rate have an impact in fall detection 

performance? 

 

2. Evaluate the performance of our framework against the state-of-the-art 

 

• External data generalization: Do models deployed by our framework perform 

adequately at detecting falls using datasets acquired under different conditions? 

 

• Positioning within state-of-the-art: Is the performance of a model deployed by our 

framework competitive within the state-of-the-art? 

 

All in all, this study makes significant contributions towards: i) understanding if customization 

is indeed necessary for a specific use case, namely regarding usage position, accelerometer 

sampling rate, and processing/performance trade-off requirements; ii) the automated creation 

of mature ready-to-go fall detection solutions adapted to several of the most frequent 

customisation requirements for wearable-based systems. 

 

 

 

Methods 

 
Figure 1 depicts an overview of the proposed approach for automated development of custom 

fall detectors, enabling a clearer understanding of the relation between each stage within the 

flow of the method. The following subsections detail the steps at each of these stages. 

 

 

 
Figure 1. Study design overview. 
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Data Acquisition 

 

Protocol 

 
Fraunhofer AICOS has been acquiring simulated falls and non-falls since 2009. The protocol 

for data collection was first described by Aguiar et al. (Aguiar et al., 2014; Alves et al., 2019), 

which followed the protocol defined by Noury et al. (Noury et al., 2007), and considers data 

collection for the on-body sensor positions of chest, belt, and pocket. Recently, that protocol 

was extended to include the wrist position and non-fall movements specific to the wrist. The 

dataset was collected in laboratory conditions, at AICOS’ living lab, where two mattresses 

were placed in the ground. The living lab also included a sofa, a table with chairs, a bed and 

an open space for acquiring running and walking samples. The activities of daily living 

recorded as non-falls included drop the sensor on the table, sit on a lower chair, catch an 

object from the floor while walking, run a few meters, laying on a bed, among others. The type 

of falls recorded included forward, backward and lateral falls (without recovery) ending lying 

on the floor. The protocol was previously described by Aguiar et al. (Aguiar et al., 2014) and 

Alves et al. (Alves et al., 2019). Overall, the dataset comprises 36 different types of falls and 

43 types of non-falls. Data was collected using a data logger Android application that provides 

access to the inertial sensors either directly built-in the smartphone or in wearable devices 

paired with the smartphone. The wearable devices used are proprietary of Fraunhofer AICOS 

and include a 3-axis Inertial Measurement Unit (IMU) (AICOS, 2016). Several smartphone 

models were used for data collection, namely: Samsung S3, S3 Mini, S4, Nexus S, Galaxy 

Nexus, Nexus 5, Moto G XT1032, and Vodafone 985N. 

 

Data distribution 

 
Data was collected in several occasions, from different participating subjects who wore a set 

of devices in different on-body locations. For this reason, none of the subjects has collected 

data for the complete set of usage positions considered in this study. For each subject, the 

positions for which only one class is available (fall or non-fall) were removed prior to the 

analysis. The cleaned dataset is composed by 42 subjects (34 male) with average age of 25.0 

± 2.9 years, an average weight of 72.4 ± 12.6 kg, and an average height of 176.0 ± 7.9 cm. 

The percentage of samples that were captured by the built-in sensors of the smartphones was 

54.17% and the percentage acquired with the wearable devices was 45.81%. The average 

sampling rate for the smartphone samples was 102.26 ± 24.11 Hz and for the wearable 

samples the average sampling rate was 97.68 ± 8.50 Hz. The accelerometer range was ± 2G 

for all used smartphone models and wearable devices. The distribution of samples across the 

two classes is presented in Table 1. The belt and pocket sensor positions have a higher 

percentage of samples than chest and wrist positions, because belt and pocket positions 

include samples from the smartphone and from wearable devices, whereas the chest and wrist 

include only samples from wearable devices. Overall, the distribution of falls and non-falls per 

position for the entire dataset may be considered nearly balanced. On average the fall events 

have a duration of 15.20 ± 4.99 seconds and the ADLs activities have a duration of 14.94 ± 
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5.30 seconds. 

 

 
Table 1. Distribution of dataset across different positions in terms of number of subjects, fall and non-fall samples. 

 
 

Modelling 

 
Figure 2 illustrates the pipeline for automated modelling, using the AICOS dataset. This 

pipeline is prepared to receive several input parameters which enable the customized 

modelling (see Figure 2): 1) train and test positions; 2) learning models; 3) target sampling 

rate; 4) grid-search optimization score. In the scope of this work, all experiments were 

performed using the F1-score as the optimization score. 

 

 

 
Figure 2. Modelling stage: data pre-processing, feature extraction and selection, and nested leave-one-subject-out valida-

tion with grid search. 

 

 

 

Data pre-processing 

 
A resampling strategy was firstly implemented with the aim of correcting the time distribution 

of all arriving samples and compensating for eventual sensor reading gaps. The accelerometer 
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signal magnitude was evenly sampled, according to the target sampling rate. To that end, we 

computed the expected time of arrival of each sample (t_e). Samples arriving before t_e were 

stacked and their average was computed and set to correspond to t_e; if there were no 

samples arriving before t_e, the value of the last sample which arrived in the stream was 

considered. This combination of up and down-sampling techniques resulted in the 

computation of the accelerometer signal magnitude, evenly distributed in time, according to 

the required sampling rate. The data stream was segmented into windows of 7.5 seconds, 

without overlap, centered in the signal magnitude maximum. If there were not enough samples 

in the beginning or in the end of the window, after centering it in the maximum, the first and/or 

the last samples, respectively, were replicated until the pre-defined window size is reached. 

Windows with a standard deviation of low accelerometer magnitude were removed in order to 

discard samples that were useless for training the fall detection algorithm. 

 

Features 

 
Several time-domain features were extracted for each time-window signal magnitude: mean, 

standard deviation, median, median deviation, maximum, minimum, energy, root mean 

square, inter quartile range, histogram (10 bins), skewness and kurtosis, using our open 

source Time Series Feature Extraction Library (AICOS, 2019). These features require low 

computation power and are the most common used features for fall detection according to 

Pannurat et al. (Pannurat et al., 2014). Features with correlation higher than 0.90 were 

removed. All features of the training set were standardized by removing the mean and scaling 

to unit variance. The same parameters were used to standardize the test set. These features 

constituted the input for all classifiers, with the exception of CNN. CNN received a feature 

vector of raw signal magnitude (for each time-window), re-scaled to [0,1] range by subtracting 

the minimum and dividing by the difference between maximum and minimum signal 

magnitude. 

 

  

Leave-one-subject-out validation 

 
Two nested LOSO loops were used for training and validation assessment. The inner LOSO 

was used to optimize the hyperparameters of the learning models via grid search (except for 

the CNN-1D model) using N-2 participants for training and 1 subject for validation. 

 

• Grid search for hyperparameters optimization: The hyperparameters of the learning 

models were optimized for F1-score metric. The following hyperparameters were 

optimized for each classifier: k-Nearest Neighbours (k-NN), parameter k and search 

algorithm; Decision Tree (DT) & Random Forest (RF), maximum depth, number of 

features and estimators, and minimum samples to split, AdaBoost, number of 

estimators; Multi-layer Perceptron (MLP), variable alpha, activation function and 

learning rate; Support Vector Machine (SVM), variable C, degree, gamma and type of 

kernel. 

 

• CNN-1D architecture: the architecture of the network encompasses two stacked 1-

Dimensional Convolutional Neural Network (CNN-1D) with kernel size of 5, with 4 
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filters, and tangent activation function. CNN-1D layers were interleaved with max 

pooling and 0.25 dropout layers. The sigmoid function was used in the last activation 

layer. The loss function was set to the binary cross-entropy and optimized with Adam 

algorithm. 

 

The outer LOSO was used to assess the performance of the best set of parameters, retrieved 

from the grid search (inner LOSO), in the remaining subject of the dataset. The final output 

metrics were computed by mapping correct and misclassifications by user, position and 

learning model. This process enabled the computation of single (cumulative) confusion 

matrices with respect to each of these parameters, from which all performance metrics were 

extracted: accuracy (Acc), sensitivity (Se), specificity (Sp), precision (Prec), F1-score (F1), 

Youden index (YI), and geometric mean of sensitivity and specificity (G). As such, this outer 

LOSO was paramount to enable the fair comparison of algorithms defined by different input 

parameters, maintaining complete user-independence in the validation process. 

 

 

Multiple Comparisons 

 
 

Table 2. Different combinations of input parameters tested using the modelling pipeline. 

 
 

 

ANOVA multiple comparison analysis was used for comparison of performance metrics 

between different tests, using vectors of metrics by user obtained from the outer LOSO 

validation loop as input. As post-hoc test, we used the Tukey’s Honest Significant Difference 

test (95% confidence level) between pairs of different learning models, usage positions or 

sampling rates. These tests aimed the identification of statistically significant differences 

between different combinations of input parameters (Table 2), in order to address the research 

questions of this work. 
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All learning models were considered and compared pairwise for training and testing with all 

positions at 100 Hz (Baseline). For simplicity of analysis, we selected a single model - Random 

Forest - for conducting all remaining tests, based on the results of the aforementioned 

comparison and the fact that it is a decision-based classifier. Algorithms based on decision 

trees are very interpretable, do not require much computation, and are ease to implement in 

any platform. A more detailed explanation of this selection process will be provided next.  

 

 

Deployment 

 
The output metrics of the LOSO validation in the modelling stage shall assist the process of 

selecting the most adequate learning model for deployment, considering the requirements of 

each specific use case, i.e. the selection process should consider performance, complexity 

and/or other requirements initially setup for the algorithm. 

 

After the selection of the classification algorithm, all data of the AICOS dataset corresponding 

to the required positions (and resampled to the desired target rate) are used to refit the 

classifier, with the respective best set of hyperparameters derived from the process of LOSO 

grid search. This step completes the deployment of a final fall detection algorithm. 

 

To evaluate the effectiveness of our method, we have deployed a fall detector algorithm using 

a Random Forest classifier, expecting a sampling rate of 10 Hz, and trained with all positions 

available in the AICOS dataset. This algorithm was then tested using all data from the UMAFall 

dataset for performance comparison with other fall detection works using the same data. 

 

Benchmark Validation Using the UMAFall Dataset 

 
We benchmarked our framework with the publicly available UMAFall dataset (Casilari et al., 

2018) described in Casilari et al. (Casilari et al., 2017; Santoyo-Ramón et al., 2018). Several 

ADLs and simulated falls were collected from 17 volunteers with an average age of 26.7 ± 

10.5 years old. Each subject wore four different wearable devices – chest, belt, wrist, and 

ankle – and carried one smartphone in the pocket. Overall, 11 types of ADLs and 3 types of 

falls were simulated, yielding a total of 970 falls and 2444 non-falls, with an average of 683 

samples for each usage position. Accelerometer, gyroscope and magnetometer data was 

collected at a sampling rate of 20 Hz from the wearables and 200 Hz from the smartphone. 

 

The UMAFall dataset was selected for its representation of all sensor positions included in 

AICOS dataset. Interestingly, it also contains data from wearables positioned in a new position 

– the ankle –, which our framework is not expecting, and shall thus allow us to assess the 

generalization of the deployed fall detector for this new usage position. 
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Results 

 
Multiple Comparisons 

 
Even though we analysed multiple comparisons for several performance metrics, we opted for 

solely presenting the results for the F1-score for simplicity of analysis, since it was selected 

as the scoring metric in the optimization process. Moreover, the F1-score will allow us to 

assess the performance of the algorithm taking into account a harmonic mean of precision 

and recall. 

 

 

 
Figure 3. F1-score for all tested classifiers, considering the baseline input parameters. Classifiers with SSD from CNN for 

each sensor position are marked with stars. 

  

  

The first set of comparisons corresponded to the performance of different learning models for 

the same set of input parameters (defined as Baseline in Table 2). Results were arranged by 

position and classifier and exhibited in Figure 3. We looked for statistically significant 

differences (SSD) between all pairwise combinations of classifiers. No SSD were found among 

the conventional supervised binary models tested within each position; however, CNN’s 

performance was frequently significantly inferior to that of the remaining models. Given the 

equivalence of all the conventional models tested, all subsequent experiments were performed 

using a single classification model. We prioritised decision-based models (Decision Tree and 

Random Forest) in this selection, due to their low prediction expensiveness which is valuable 

for wearable implementations. Random Forest was finally selected since it consistently led to 
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higher average F1-scores than Decision Tree classifiers. 

 

 

 
Figure 4. F1-score for Random Forest classification, considering the described combinations of input parameters. Pipelines 

with SSD from Baseline for each sensor position are marked with stars. 

 

Figure 4 presents the results for different combinations of train/test sensor positions, organised 

by sensor position of test data. Multiple comparison analysis was performed between results 

for respective positions derived from setting as input parameters: 1) Baseline vs. Unseen test 

position; 2) Baseline vs. Single position. No SSD were found between either of them. This 

means that, for example, for 1), the performance of detecting falls in data from sensors in the 

pocket remains unchanged irrespective of whether data from sensors in this position are 

included in the training set or not; and, for 2), solely using data from sensors in the pocket for 

training does not improve the performance of fall detection in data from sensors in the pocket, 

relatively to including data from all the different sensor positions in the training set. 

 

Finally, fall detection performance results using data sampled at different rates are depicted 

in Figure 4. A Random Forest classifier was trained and tested using data from sensors in all 

the positions available in AICOS dataset and varying the accelerometer sampling rate 

(Baseline and Rate variation entries of Table 2). Considering rates of 100 Hz, 50 Hz, 20 Hz or 

10 Hz did not lead to SSD between the fall detection performances for respective test 

positions. However, statistically significant decays of performance were verified for belt and 

pocket positions for rates of 5 Hz and 3 Hz, and, more evidently, for all positions with data 

sampled at 1 Hz. 
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Benchmark Validation 

 
Table 3. Evaluation results with the UMAFall dataset. All performance metrics are in % 

 
 

Table 3 combines the results obtained using the framework’s model specifically deployed for 

benchmark validation, as previously described, organised by testing data sensor positions, for 

all sensor positions included in AICOS dataset (i.e. except ankle), and for the entire dataset. 

All computed metrics were presented for analysis to instigate further comparisons with 

previous and future works in the field. 

 

The belt sensor position presented, overall, the best results, immediately followed by pocket 

and chest positions - the first associated with more false positive occurrences (lower 

specificity) and the latter associated with more false negative occurrences (lower sensitivity). 

For data from sensors placed on the wrist a decrease of performance was verified, as 

compared with the previous positions, which is coherent with the results obtained using the 

AICOS dataset (Figure 3). Finally, considering the testing data from sensors on the ankle 

yielded the poorest performance for all compared metrics. Combining the samples of all 

positions, we achieved an F1-score of 84.6%, which increased until 88.8% by not considering 

the unexpected ankle position. 

 

Discussion 

 
This section will provide an overall discussion of results, considering general results, CNNs 

compared with standard techniques, and impact of positions and sampling rate in the 

performance of the models. Moreover, a state-of-the-art performance comparison will be 

presented along with potential limitations of this study. 

 

Need For Customization 

 
Figure 3 and Figure 4 provide important information towards understanding the cases worthy 

of investment in customization. 

 

Starting with the problem of selecting the most adequate learning model, considering trade-

offs of performance and available resources in wearable implementations, one can take the 
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results depicted in Figure 3, which unveiled that there is no SSD between the performance of 

all standard binary classification models in our tests for all considered sensor positions. If we 

describe model complexity as a function of its consumed resources and prediction 

expensiveness, one can observe that there is no evidence that higher model complexity leads 

to improved results in the conditions under which these tests took place. This means that 

selecting the least complex model for implementation may be beneficial for the final system, 

because it shall lead to lower resource consumption while achieving statistically similar results. 

If this conclusion is taken under consideration at the moment of system design, there may not 

be a need to develop several fall detectors with custom learning models to improve 

performance under different restrictions on the availability of resources. 

 

Figure 4 enables a discussion of the role of considering (or not) sole data from the intended 

place of usage of the sensing device in the training stage. Our tests verified that the fall 

detection performance on data from each of the 4 sensor positions is similar, regardless of its 

inclusion in the training stage, using AICOS dataset. While this conclusion is not particularly 

surprising for belt and pocket (both at the waist), or even chest (all in the trunk region), to 

achieve similar performance for the wrist regardless of its consideration in the training stage 

is not intuitive. This conclusion can reiterate a claim for position generalization of our method, 

even though further tests should be conducted to thoroughly understand if there is a more 

significant impact for other performance metrics. Moreover, to solely consider data from the 

intended sensor position to train the models leads to statistically similar results than 

considering all positions as training data. As such, it may be beneficial to consider all positions 

at the modelling stage, regardless of the effective place of usage of the final system, so that 

its portability is facilitated under different conditions, if needed. 

 

From the rate impact study, one can conclude that the lowest sampling rate considered that 

did not present SSD from the baseline 100 Hz pipeline was 10 Hz. This conclusion appears 

to be coherent with findings of previous works (Liu et al., 2018), setting a valuable landmark 

in the field of fall detection towards the efficiency of wearable systems. 

 

State-of-the-art Performance 

 
The quality of the AICOS dataset, regarding its variety of usage positions, the representative 

amount of samples for each position, and expression of relevant different types of falls and 

non-falls, allowed us to deploy a robust Random Forest classifier trained with all usage 

positions of this dataset for a target rate of 10 Hz, since no SSD were found between these 

models and models trained considering higher sampling rates. This process based the 

conclusion that our framework is able to deploy models that perform adequately when tested 

with data acquired under different conditions (not controlled by the authors), as Table 3 

corroborates. 

 

The authors of the UMA dataset have achieved their best results for chest and belt (Santoyo-

Ramón et al., 2018), comparing with other usage positions, consistently with our findings, to 

which we can add the pocket position in our case (performance similar to chest and belt). 

Moreover, the geometric mean achieved in that work was always inferior to 75% for any 

combination that included the sensor in the ankle, which means that even though our dataset 
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did not feature any sample acquired from the ankle position, our method still outperforms the 

method of the authors of the dataset at detecting falls in this position (79% geometric mean 

for the sole classification of ankle samples). 

 

Directly comparing previous studies with our user-independent approach is, however, a 

difficult task, since the validation methods previously reported are mostly user-dependent; 

thus, it is unclear if these methods would lead to the same results under user-independent 

conditions, typically more challenging. The work of Wang et al. (Wang et al., 2018) was the 

only study found employing LOSO cross validation. Comparing that work with ours, one can 

verify that our method achieved better results (geometric mean of 91% vs. 88%) for all 

positions considered in the UMA dataset. However, the authors did not explicitly refer if all 

UMA dataset positions were considered to evaluate their results. 

 

It is also worth mentioning that the model that we have deployed was trained with data 

downsampled to 10 Hz, instead of using the most frequent sampling rate of the UMA dataset, 

20 Hz. In spite of that, the results obtained with our models are in line with those of other 

studies using the same data. 

 

Limitations 

 
These conclusions may not be true for all datasets, but only for datasets similar to AICOS; 

they are maybe only true due to the quality of our dataset, and the higher amount of samples 

for each usage position, that allowed us to generalize better to new unseen positions. 

Moreover, these results were obtained using the F1-score as the optimization score. One can 

also analyse all of the pipelines’ comparisons for other scoring metrics, and the conclusions 

found with the F1-score may not stand. The model deployed by our framework retrieved from 

the pipeline described in this study should also be validated with more datasets, and ideally 

with data from real fall events. 

 

Conclusion 

 
In this work, we studied the impact of learning models, on-body positioning and sampling rate 

in fall detection performance, using a new machine learning pipeline which is able to deploy 

fall detection solutions adapted to the aforementioned system requirements. Our experiments 

did not verify any relation between model complexity and performance. Moreover, using our 

dataset and method, considering 3 positions in the training set was enough for achieving 

model generalization for the 4th (unseen) position, and considering solely data from a certain 

position vs. all positions in the training stage led to statistically similar results when detecting 

falls at that position. We were also able to decrease the sampling rate expected by our pipeline 

until 10 Hz without any statistically significant impact in performance. 

 

Finally, we used the UMAFall dataset to benchmark a solution deployed by our framework. 

This solution is expected to receive data sampled at 10 Hz and uses a Random Forest 

classifier previously trained with data from AICOS dataset. This experiment unveiled that our 

solution led to state-of-the-art results for the UMAFall dataset, even under our demanding test 
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conditions (considering an unseen test position, the ankle; lower sampling rate; test data 

acquired under conditions not controlled by the authors). 

 

As future work, we can optimize our pipeline for different performance metrics (other than F1-

score), to deploy models that require a specific trade-off between sensitivity and specificity. 

For example, in a specific case or disease it can be more important to detect falls than to have 

a higher rate of false alarms. This framework will ease the fast deployment of fall detection 

models that are adjusted to different use cases. After selecting the most suitable model and 

the target performance metric, we expect to implement our pipeline in a wearable solution to 

assess the model’s performance in free-living conditions. 
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